Your browser doesn't support javascript.
loading
IAPP/amylin and ß-cell failure: implication of the risk factors of type 2 diabetes.
Kanatsuka, Azuma; Kou, Shigetake; Makino, Hideichi.
Afiliación
  • Kanatsuka A; Diabetes Center, Chiba Central Medical Center, 1835-1 Kasori, Wakaba, Chiba, 264-0017 Japan.
  • Kou S; Kou Clinic, 136-42, Iidachou, Narita, Chiba 286-0041 Japan.
  • Makino H; 3Ehime University, Shitsukawa, Toon, Ehime 791-0295 Japan.
Diabetol Int ; 9(3): 143-157, 2018 Jul.
Article en En | MEDLINE | ID: mdl-30603362
In type 2 diabetes (T2D), the most significant pathological change in pancreatic islets is amyloid deposits, of which a major component is islet amyloid polypeptide (IAPP), also called amylin. IAPP is expressed in ß-cells and co-secreted with insulin. Together with the inhibitory effects of synthetic human IAPP (hIAPP) on insulin secretion, our studies, using hIAPP transgenic mice, in which glucose-stimulated insulin secretion was moderately reduced without amyloid deposit, and hIAPP gene-transfected ß-cell lines, in which insulin secretion was markedly impaired without amyloid, predicted that soluble hIAPP-related molecules would exert cytotoxicity on ß-cells. Human IAPP is one of the most aggregation-prone peptides that interact with cell membranes. While it is widely reported that soluble hIAPP oligomers promote cytotoxicity, this is still a hypothesis since the mechanisms are not yet fully defined. Several hIAPP transgenic mouse models did not develop diabetes; however, in models with backgrounds characterized for diabetic phenotypes, ß-cell function and glucose tolerance did worsen, compared to those in non-transgenic models with similar backgrounds. Together with these findings, many studies on metabolic and molecular disorders induced by risk factors of T2D suggest that in T2D subjects, toxic IAPP oligomers accumulate in ß-cells, impair their function, and reduce mass through disruption of cell membranes, resulting in ß-cell failure. IAPP might be central to ß-cell failure in T2D. Anti-amyloid aggregation therapeutics will be developed to create treatments with more durable and beneficial effects on ß-cell function.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Diabetol Int Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Diabetol Int Año: 2018 Tipo del documento: Article