Synthesis and Electronic Structure of Neutral Square-Planar High-Spin Iron(II) Complexes Supported by a Dianionic Pincer Ligand.
Inorg Chem
; 58(2): 1252-1266, 2019 Jan 22.
Article
en En
| MEDLINE
| ID: mdl-30608668
Two square-planar high-spin FeII complexes bearing a dianionic pyridine dipyrrolate pincer ligand and a diethyl ether or tetrahydrofuran ligand were synthesized and structurally characterized, and their electronic structures were elucidated by a combined spectroscopic and computational approach. In contrast to previous examples, the S = 2 ground states of these square-planar FeII complexes do not require an overall anionic charge of the compounds or incorporation of alkali metal cations. The tetrahydrofuran complex exhibits an equilibrium between four- and five-coordinate species in solution, which was supported by 1H NMR and 57Fe Mössbauer spectroscopy and comparison to a structurally characterized five-coordinate pyridine dipyrrolate iron bis-pyridine adduct. A detailed computational analysis of the electronic structures of the four- and five-coordinate species via density functional theory provides insight into the origins of the unusual ground state configurations for FeII in a square-planar ligand field and explains the associated characteristic spectroscopic parameters.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Inorg Chem
Año:
2019
Tipo del documento:
Article
País de afiliación:
Estados Unidos