Your browser doesn't support javascript.
loading
Predictive Model for High-Risk Coronary Artery Disease.
Jang, James J; Bhapkar, Manjushri; Coles, Adrian; Vemulapalli, Sreekanth; Fordyce, Christopher B; Lee, Kerry L; Udelson, James E; Hoffmann, Udo; Tardif, Jean-Claude; Jones, W Schuyler; Mark, Daniel B; Sorrell, Vincent L; Espinoza, Andrey; Douglas, Pamela S; Patel, Manesh R.
Afiliación
  • Jang JJ; San Jose Medical Center, Kaiser Permanente, CA (J.J.J.).
  • Bhapkar M; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (M.B., A.C., S.V., C.B.F., K.L.L., W.S.J., D.B.M., P.S.D., M.R.P.).
  • Coles A; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (M.B., A.C., S.V., C.B.F., K.L.L., W.S.J., D.B.M., P.S.D., M.R.P.).
  • Vemulapalli S; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (M.B., A.C., S.V., C.B.F., K.L.L., W.S.J., D.B.M., P.S.D., M.R.P.).
  • Fordyce CB; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (M.B., A.C., S.V., C.B.F., K.L.L., W.S.J., D.B.M., P.S.D., M.R.P.).
  • Lee KL; Division of Cardiology, University of British Columbia, Vancouver, Canada (C.B.F.).
  • Udelson JE; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (M.B., A.C., S.V., C.B.F., K.L.L., W.S.J., D.B.M., P.S.D., M.R.P.).
  • Hoffmann U; Department of Medicine, Tufts Medical Center, Boston, MA (J.E.U.).
  • Tardif JC; Massachusetts General Hospital, Harvard Medical School, Boston (U.H.).
  • Jones WS; Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada (J.-C.T.).
  • Mark DB; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (M.B., A.C., S.V., C.B.F., K.L.L., W.S.J., D.B.M., P.S.D., M.R.P.).
  • Sorrell VL; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (M.B., A.C., S.V., C.B.F., K.L.L., W.S.J., D.B.M., P.S.D., M.R.P.).
  • Espinoza A; University of Kentucky Hospital, Lexington, KY (V.L.S.).
  • Douglas PS; Hunterdon Medical Center, Flemington, NJ (A.E.).
  • Patel MR; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (M.B., A.C., S.V., C.B.F., K.L.L., W.S.J., D.B.M., P.S.D., M.R.P.).
Circ Cardiovasc Imaging ; 12(2): e007940, 2019 02.
Article en En | MEDLINE | ID: mdl-30712364
BACKGROUND: Patients with high-risk coronary artery disease (CAD) may be difficult to identify. METHODS: Using the PROMISE (Prospective Multicenter Imaging Study for Evaluation of Chest Pain) cohort randomized to coronary computed tomographic angiography (n=4589), 2 predictive models were developed for high-risk CAD, defined as left main stenosis (≥50% stenosis) or either (1) ≥50% stenosis [50] or (2) ≥70% stenosis [70] of 3 vessels or 2-vessel CAD involving the proximal left anterior descending artery. Pretest predictors were examined using stepwise logistic regression and assessed for discrimination and calibration. RESULTS: High-risk CAD was identified in 6.6% [50] and 2.4% [70] of patients. Models developed to predict high-risk CAD discriminated well: [50], bias-corrected C statistic=0.73 (95% CI, 0.71-0.76); [70], bias-corrected C statistic=0.73 (95% CI, 0.68-0.77). Variables predictive of CAD in both models included family history of premature CAD, age, male sex, lower glomerular filtration rate, diabetes mellitus, elevated systolic blood pressure, and angina. Additionally, smoking history was predictive of [50] CAD and sedentary lifestyle of [70] CAD. Both models characterized high-risk CAD better than the Pooled Cohort Equation (area under the curve=0.70 and 0.71 for [50] and [70], respectively) and Diamond-Forrester risk scores (area under the curve=0.68 and 0.71, respectively). Both [50] and [70] CAD was associated with more frequent invasive interventions and adverse events than non-high-risk CAD (all P<0.0001). CONCLUSIONS: In contemporary practice, 2.4% to 6.6% of stable, symptomatic patients requiring noninvasive testing have high-risk CAD. A simple combination of pretest clinical variables improves prediction of high-risk CAD over traditional risk assessments. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov . Unique identifier: NCT01174550.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Enfermedad de la Arteria Coronaria / Técnicas de Apoyo para la Decisión / Angiografía Coronaria / Estenosis Coronaria / Angiografía por Tomografía Computarizada Tipo de estudio: Clinical_trials / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged País/Región como asunto: America do norte Idioma: En Revista: Circ Cardiovasc Imaging Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA / DIAGNOSTICO POR IMAGEM Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Enfermedad de la Arteria Coronaria / Técnicas de Apoyo para la Decisión / Angiografía Coronaria / Estenosis Coronaria / Angiografía por Tomografía Computarizada Tipo de estudio: Clinical_trials / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged País/Región como asunto: America do norte Idioma: En Revista: Circ Cardiovasc Imaging Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA / DIAGNOSTICO POR IMAGEM Año: 2019 Tipo del documento: Article