Your browser doesn't support javascript.
loading
Thermodynamic signatures of quantum criticality in cuprate superconductors.
Michon, B; Girod, C; Badoux, S; Kacmarcík, J; Ma, Q; Dragomir, M; Dabkowska, H A; Gaulin, B D; Zhou, J-S; Pyon, S; Takayama, T; Takagi, H; Verret, S; Doiron-Leyraud, N; Marcenat, C; Taillefer, L; Klein, T.
Afiliación
  • Michon B; Institut Néel, Université Grenoble Alpes, Grenoble, France.
  • Girod C; Institut quantique, Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada.
  • Badoux S; CNRS, Institut Néel, Grenoble, France.
  • Kacmarcík J; Institut Néel, Université Grenoble Alpes, Grenoble, France.
  • Ma Q; Institut quantique, Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada.
  • Dragomir M; CNRS, Institut Néel, Grenoble, France.
  • Dabkowska HA; Institut quantique, Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada.
  • Gaulin BD; Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia.
  • Zhou JS; Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada.
  • Pyon S; Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada.
  • Takayama T; Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada.
  • Takagi H; Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada.
  • Verret S; Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada.
  • Doiron-Leyraud N; Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
  • Marcenat C; Materials Science and Engineering Program, Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA.
  • Taillefer L; Department of Advanced Materials Science, University of Tokyo, Kashiwa, Japan.
  • Klein T; Department of Advanced Materials Science, University of Tokyo, Kashiwa, Japan.
Nature ; 567(7747): 218-222, 2019 03.
Article en En | MEDLINE | ID: mdl-30760922
ABSTRACT
The three central phenomena of cuprate (copper oxide) superconductors are linked by a common doping level p*-at which the enigmatic pseudogap phase ends and the resistivity exhibits an anomalous linear dependence on temperature, and around which the superconducting phase forms a dome-shaped area in the phase diagram1. However, the fundamental nature of p* remains unclear, in particular regarding whether it marks a true quantum phase transition. Here we measure the specific heat C of the cuprates Eu-LSCO and Nd-LSCO at low temperature in magnetic fields large enough to suppress superconductivity, over a wide doping range2 that includes p*. As a function of doping, we find that Cel/T is strongly peaked at p* (where Cel is the electronic contribution to C) and exhibits a log(1/T) dependence as temperature T tends to zero. These are the classic thermodynamic signatures of a quantum critical point3-5, as observed in heavy-fermion6 and iron-based7 superconductors at the point where their antiferromagnetic phase comes to an end. We conclude that the pseudogap phase of cuprates ends at a quantum critical point, the associated fluctuations of which are probably involved in d-wave pairing and the anomalous scattering of charge carriers.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nature Año: 2019 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nature Año: 2019 Tipo del documento: Article País de afiliación: Francia