Your browser doesn't support javascript.
loading
The Effect of Microfluidic Geometry on Myoblast Migration.
Atmaramani, Rahul; Black, Bryan J; Lam, Kevin H; Sheth, Vinit M; Pancrazio, Joseph J; Schmidtke, David W; Alsmadi, Nesreen Zoghoul.
Afiliación
  • Atmaramani R; Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA. rxa162330@utdallas.edu.
  • Black BJ; Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA. bjb140530@utdallas.edu.
  • Lam KH; Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA. Kevin.Lam2@utdallas.edu.
  • Sheth VM; Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA. vms150130@utdallas.edu.
  • Pancrazio JJ; Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA. Joseph.Pancrazio@utdallas.edu.
  • Schmidtke DW; Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA. David.Schmidtke@utdallas.edu.
  • Alsmadi NZ; Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA. Nesreen.Alsmadi@utdallas.edu.
Micromachines (Basel) ; 10(2)2019 Feb 21.
Article en En | MEDLINE | ID: mdl-30795574
ABSTRACT
In vitro systems comprised of wells interconnected by microchannels have emerged as a platform for the study of cell migration or multicellular models. In the present study, we systematically evaluated the effect of microchannel width on spontaneous myoblast migration across these microchannels-from the proximal to the distal chamber. Myoblast migration was examined in microfluidic devices with varying microchannel widths of 1.5⁻20 µm, and in chips with uniform microchannel widths over time spans that are relevant for myoblast-to-myofiber differentiation in vitro. We found that the likelihood of spontaneous myoblast migration was microchannel width dependent and that a width of 3 µm was necessary to limit spontaneous migration below 5% of cells in the seeded well after 48 h. These results inform the future design of Polydimethylsiloxane (PDMS) microchannel-based co-culture platforms as well as future in vitro studies of myoblast migration.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Micromachines (Basel) Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Micromachines (Basel) Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos