Your browser doesn't support javascript.
loading
Facile Access to Bridged Ring Systems via Point-to-Planar Chirality Transfer: Unified Synthesis of Ten Cyclocitrinols.
Wang, Yu; Ju, Wei; Tian, Hailong; Sun, Suyun; Li, Xinghui; Tian, Weisheng; Gui, Jinghan.
Afiliación
  • Wang Y; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.
  • Ju W; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.
  • Tian H; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.
  • Sun S; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.
  • Li X; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.
  • Tian W; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.
  • Gui J; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.
J Am Chem Soc ; 141(12): 5021-5033, 2019 03 27.
Article en En | MEDLINE | ID: mdl-30827095
ABSTRACT
Bridged ring systems are found in a wide variety of biologically active molecules including pharmaceuticals and natural products. However, the development of practical methods to access such systems with precise control of the planar chirality presents considerable challenges to synthetic chemists. In the context of our work on the synthesis of cyclocitrinols, a family of steroidal natural products, we herein report the development of a point-to-planar chirality transfer strategy for preparing bridged ring systems from readily accessible fused ring systems. Inspired by the proposed pathway for biosynthesis of cyclocitrinols from ergosterol, our strategy involves a bioinspired cascade rearrangement, which enabled the gram-scale synthesis of a common intermediate in nine steps and subsequent unified synthesis of 10 cyclocitrinols in an additional one to three steps. Our work provides experimental support for the proposed biosynthetic pathway and for the possible interrelationships between members of the cyclocitrinol family. In addition to being a convenient route to 5(10→19) abeo-steroids, our strategy also offers a generalized approach to bridged ring systems via point-to-planar chirality transfer. Mechanistic investigations suggest that the key cascade rearrangement involves a regioselective ring scission of a cyclopropylcarbinyl cation rather than a direct Wagner-Meerwein rearrangement.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2019 Tipo del documento: Article País de afiliación: China