Your browser doesn't support javascript.
loading
Connectional architecture of a mouse hypothalamic circuit node controlling social behavior.
Lo, Liching; Yao, Shenqin; Kim, Dong-Wook; Cetin, Ali; Harris, Julie; Zeng, Hongkui; Anderson, David J; Weissbourd, Brandon.
Afiliación
  • Lo L; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
  • Yao S; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125.
  • Kim DW; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125.
  • Cetin A; Allen Institute for Brain Science, Seattle, WA 98109.
  • Harris J; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
  • Zeng H; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125.
  • Anderson DJ; Allen Institute for Brain Science, Seattle, WA 98109.
  • Weissbourd B; Allen Institute for Brain Science, Seattle, WA 98109.
Proc Natl Acad Sci U S A ; 116(15): 7503-7512, 2019 04 09.
Article en En | MEDLINE | ID: mdl-30898882
ABSTRACT
Type 1 estrogen receptor-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvlEsr1) play a causal role in the control of social behaviors, including aggression. Here we use six different viral-genetic tracing methods to systematically map the connectional architecture of VMHvlEsr1 neurons. These data reveal a high level of input convergence and output divergence ("fan-in/fan-out") from and to over 30 distinct brain regions, with a high degree (∼90%) of bidirectionality, including both direct as well as indirect feedback. Unbiased collateralization mapping experiments indicate that VMHvlEsr1 neurons project to multiple targets. However, we identify two anatomically distinct subpopulations with anterior vs. posterior biases in their collateralization targets. Nevertheless, these two subpopulations receive indistinguishable inputs. These studies suggest an overall system architecture in which an anatomically feed-forward sensory-to-motor processing stream is integrated with a dense, highly recurrent central processing circuit. This architecture differs from the "brain-inspired," hierarchical feed-forward circuits used in certain types of artificial intelligence networks.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Conducta Social / Núcleo Hipotalámico Ventromedial / Conducta Animal / Red Nerviosa / Neuronas Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Conducta Social / Núcleo Hipotalámico Ventromedial / Conducta Animal / Red Nerviosa / Neuronas Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2019 Tipo del documento: Article