Your browser doesn't support javascript.
loading
ENIGMA: an enterotype-like unigram mixture model for microbial association analysis.
Abe, Ko; Hirayama, Masaaki; Ohno, Kinji; Shimamura, Teppei.
Afiliación
  • Abe K; Division of Systems Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
  • Hirayama M; School of Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, 461-8873, Japan.
  • Ohno K; Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
  • Shimamura T; Division of Systems Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan. shimamura@med.nagoya-u.ac.jp.
BMC Genomics ; 20(Suppl 2): 191, 2019 Apr 04.
Article en En | MEDLINE | ID: mdl-30967109
BACKGROUND: One of the major challenges in microbial studies is detecting associations between microbial communities and a specific disease. A specialized feature of microbiome count data is that intestinal bacterial communities form clusters called as "enterotype", which are characterized by differences in specific bacterial taxa, making it difficult to analyze these data under health and disease conditions. Traditional probabilistic modeling cannot distinguish between the bacterial differences derived from enterotype and those related to a specific disease. RESULTS: We propose a new probabilistic model, named as ENIGMA (Enterotype-like uNIGram mixture model for Microbial Association analysis), which can be used to address these problems. ENIGMA enabled simultaneous estimation of enterotype-like clusters characterized by the abundances of signature bacterial genera and the parameters of environmental effects associated with the disease. CONCLUSION: In the simulation study, we evaluated the accuracy of parameter estimation. Furthermore, by analyzing the real-world data, we detected the bacteria related to Parkinson's disease. ENIGMA is implemented in R and is available from GitHub ( https://github.com/abikoushi/enigma ).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Bacterias / Interacciones Microbianas / Microbioma Gastrointestinal / Modelos Biológicos Tipo de estudio: Observational_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Bacterias / Interacciones Microbianas / Microbioma Gastrointestinal / Modelos Biológicos Tipo de estudio: Observational_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Japón