Your browser doesn't support javascript.
loading
Nonparametric multiple comparisons.
Noguchi, Kimihiro; Abel, Riley S; Marmolejo-Ramos, Fernando; Konietschke, Frank.
Afiliación
  • Noguchi K; Department of Mathematics, Western Washington University, Bellingham, WA, 98225, USA. Kimihiro.Noguchi@wwu.edu.
  • Abel RS; Department of Mathematics, Western Washington University, Bellingham, WA, 98225, USA.
  • Marmolejo-Ramos F; School of Psychology, University of Adelaide, Adelaide, Australia.
  • Konietschke F; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, 10117, Berlin, Germany.
Behav Res Methods ; 52(2): 489-502, 2020 04.
Article en En | MEDLINE | ID: mdl-31062191
Nonparametric multiple comparisons are a powerful statistical inference tool in psychological studies. In this paper, we review a rank-based nonparametric multiple contrast test procedure (MCTP) and propose an improvement by allowing the procedure to accommodate various effect sizes. In the review, we describe relative effects and show how utilizing the unweighted reference distribution in defining the relative effects in multiple samples may avoid the nontransitive paradoxes. Next, to improve the procedure, we allow the relative effects to be transformed by using the multivariate delta method and suggest a log odds-type transformation, which leads to effect sizes similar to Cohen's d for easier interpretation. Then, we provide theoretical justifications for an asymptotic strong control of the family-wise error rate (FWER) of the proposed method. Finally, we illustrate its use with a simulation study and an example from a neuropsychological study. The proposed method is implemented in the 'nparcomp' R package via the 'mctp' function.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biometría Idioma: En Revista: Behav Res Methods Asunto de la revista: CIENCIAS DO COMPORTAMENTO Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biometría Idioma: En Revista: Behav Res Methods Asunto de la revista: CIENCIAS DO COMPORTAMENTO Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos