Your browser doesn't support javascript.
loading
Acetylcholine suppresses microglial inflammatory response via α7nAChR to protect hippocampal neurons.
Li, Lin; Liu, Zhan; Jiang, Yong-Ying; Shen, Wei-Xing; Peng, Yu-Ping; Qiu, Yi-Hua.
Afiliación
  • Li L; Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
  • Liu Z; Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
  • Jiang YY; Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
  • Shen WX; Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
  • Peng YP; Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
  • Qiu YH; Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
J Integr Neurosci ; 18(1): 51-56, 2019 Mar 30.
Article en En | MEDLINE | ID: mdl-31091848
ABSTRACT
Neuroinflammation is principally linked to glial function and has been demonstrated to participate in the pathogenesis of Alzheimer's disease, a neurodegenerative disorder characterized by beta-amyloid ccumulation and neurotransmission disruption. Previous findings suggest acetylcholine exerts anti-inflammatory and neuroprotective properties in several neurodegenerative disorders. However, the underlying mechanisms remain elusive. Here evaluation of the influence of acetylcholine on neuroinflammation and neurodegeneration in Alzheimer's disease is reported and further neuroprotective mechanisms are investigated. Investigation of microglia in lipopolysaccharide-induced hippocampal neuronal toxicity employed α7nAChR gene silencing and demonstrated that both the anti-inflammatory and neuroprotective effects of acetylcholine rely on α7nAChR pathways. As expected, in neuron-microglia co-cultures lipopolysaccharide induced an increase in expression of pro-inflammatory factors, including inducible nitric oxide synthase, interleukin-1α, and tumor necrosis factor-α, and decreased expression of neurotrophic factors such as insulin-like growth factor-1, and neuronal apoptosis. Acetylcholine protects against lipopolysaccharide-elicited neuronal injury by inhibiting the microglial inflammatory response and promoting microglial neurotrophic factor production via the action of α7nAChR on microglia. These findings establish that ACh activates α7nAChR in microglia, which in turn protects hippocampal neurons.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Acetilcolina / Microglía / Neuroprotección / Hipocampo / Inflamación / Neuronas Límite: Animals Idioma: En Revista: J Integr Neurosci Asunto de la revista: NEUROLOGIA Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Acetilcolina / Microglía / Neuroprotección / Hipocampo / Inflamación / Neuronas Límite: Animals Idioma: En Revista: J Integr Neurosci Asunto de la revista: NEUROLOGIA Año: 2019 Tipo del documento: Article País de afiliación: China