Your browser doesn't support javascript.
loading
Investigating the Urban Air Quality Effects of Cool Walls and Cool Roofs in Southern California.
Zhang, Jiachen; Li, Yun; Tao, Wei; Liu, Junfeng; Levinson, Ronnen; Mohegh, Arash; Ban-Weiss, George.
Afiliación
  • Zhang J; Department of Civil and Environmental Engineering , University of Southern California , Los Angeles , California 90089 , United States.
  • Li Y; Department of Civil and Environmental Engineering , University of Southern California , Los Angeles , California 90089 , United States.
  • Tao W; Multiphase Chemistry Department , Max-Planck-Institute for Chemistry , Hahn-Meitner-Weg 1 , 55128 Mainz , Germany.
  • Liu J; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , P. R. China.
  • Levinson R; Heat Island Group , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.
  • Mohegh A; Department of Civil and Environmental Engineering , University of Southern California , Los Angeles , California 90089 , United States.
  • Ban-Weiss G; Department of Civil and Environmental Engineering , University of Southern California , Los Angeles , California 90089 , United States.
Environ Sci Technol ; 53(13): 7532-7542, 2019 07 02.
Article en En | MEDLINE | ID: mdl-31125208
ABSTRACT
Solar reflective cool roofs and walls can be used to mitigate the urban heat island effect. While many past studies have investigated the climate impacts of adopting cool surfaces, few studies have investigated their effects on air pollution, especially on particulate matter (PM). This research for the first time investigates the influence of widespread deployment of cool walls on urban air pollutant concentrations, and systematically compares cool wall to cool roof effects. Simulations using a coupled meteorology-chemistry model (WRF-Chem) for a representative summertime period show that cool walls and roofs can reduce urban air temperatures, wind speeds, and planetary boundary heights in the Los Angeles Basin. Consequently, increasing wall (roof) albedo by 0.80, an upper bound scenario, leads to maximum daily 8-h average ozone concentration reductions of 0.35 (0.83) ppbv in Los Angeles County. However, cool walls (roofs) increase daily average PM2.5 concentrations by 0.62 (0.85) µg m-3. We investigate the competing processes driving changes in concentrations of speciated PM2.5. Increases in primary PM (elemental carbon and primary organic aerosols) concentrations can be attributed to reductions in ventilation of the Los Angeles Basin. Increases in concentrations of semivolatile species (e.g., nitrate) are mainly driven by increases in gas-to-particle conversion due to reduced atmospheric temperatures.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ozono / Contaminantes Atmosféricos / Contaminación del Aire País/Región como asunto: America do norte Idioma: En Revista: Environ Sci Technol Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ozono / Contaminantes Atmosféricos / Contaminación del Aire País/Región como asunto: America do norte Idioma: En Revista: Environ Sci Technol Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos