Your browser doesn't support javascript.
loading
Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies.
Park, Tae-Eun; Mustafaoglu, Nur; Herland, Anna; Hasselkus, Ryan; Mannix, Robert; FitzGerald, Edward A; Prantil-Baun, Rachelle; Watters, Alexander; Henry, Olivier; Benz, Maximilian; Sanchez, Henry; McCrea, Heather J; Goumnerova, Liliana Christova; Song, Hannah W; Palecek, Sean P; Shusta, Eric; Ingber, Donald E.
Afiliación
  • Park TE; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
  • Mustafaoglu N; Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea.
  • Herland A; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
  • Hasselkus R; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
  • Mannix R; Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden.
  • FitzGerald EA; Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
  • Prantil-Baun R; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
  • Watters A; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
  • Henry O; Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
  • Benz M; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
  • Sanchez H; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
  • McCrea HJ; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
  • Goumnerova LC; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
  • Song HW; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
  • Palecek SP; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
  • Shusta E; Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
  • Ingber DE; Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
Nat Commun ; 10(1): 2621, 2019 06 13.
Article en En | MEDLINE | ID: mdl-31197168
The high selectivity of the human blood-brain barrier (BBB) restricts delivery of many pharmaceuticals and therapeutic antibodies to the central nervous system. Here, we describe an in vitro microfluidic organ-on-a-chip BBB model lined by induced pluripotent stem cell-derived human brain microvascular endothelium interfaced with primary human brain astrocytes and pericytes that recapitulates the high level of barrier function of the in vivo human BBB for at least one week in culture. The endothelium expresses high levels of tight junction proteins and functional efflux pumps, and it displays selective transcytosis of peptides and antibodies previously observed in vivo. Increased barrier functionality was accomplished using a developmentally-inspired induction protocol that includes a period of differentiation under hypoxic conditions. This enhanced BBB Chip may therefore represent a new in vitro tool for development and validation of delivery systems that transport drugs and therapeutic antibodies across the human BBB.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Barrera Hematoencefálica / Sistemas de Liberación de Medicamentos / Células Endoteliales / Microfluídica Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Barrera Hematoencefálica / Sistemas de Liberación de Medicamentos / Células Endoteliales / Microfluídica Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos