Your browser doesn't support javascript.
loading
Assessment of residual reduction procedures for high-speed tasks.
Pallarès-López, Roger; Costa Alvim, Felipe; Febrer-Nafría, Míriam; Luporini Menegaldo, Luciano; Font-Llagunes, Josep M.
Afiliación
  • Pallarès-López R; Department of Mechanical Engineering & Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Av. Diagonal, 647 08028 Barcelona, Spain. Electronic address: roger.pallares@estudiant.upc.edu.
  • Costa Alvim F; School of Medical Sciences and Health of Juiz de Fora, SUPREMA, Alameda Salvaterra, 200 - Salvaterra, 36033-003, Juiz de Fora, MG, Brazil.
  • Febrer-Nafría M; Department of Mechanical Engineering & Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Av. Diagonal, 647 08028 Barcelona, Spain.
  • Luporini Menegaldo L; Biomedical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Av. Pedro Calmon, 550 - Cidade Universitária, 21941-901, Rio de Janeiro, RJ, Brazil.
  • Font-Llagunes JM; Department of Mechanical Engineering & Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Av. Diagonal, 647 08028 Barcelona, Spain.
Gait Posture ; 73: 116-119, 2019 09.
Article en En | MEDLINE | ID: mdl-31323619
ABSTRACT

BACKGROUND:

Experimental and modeling errors can lead to dynamically inconsistent results when performing inverse dynamic analyses of human movement. Adding low-value residual pelvis actuators could deal with such a problem. However, in certain tasks, these residuals may remain quite large, and strategies based on motion or force variation must be applied. RESEARCH QUESTION Can the dynamic inconsistency be handled by an optimal control algorithm that changes the measured kinematics in the preparatory phase of the single leg triple hop test, a relatively high-speed and torque-demanding task, so that residuals are kept within a low range?

METHODS:

The proposed optimal control algorithm was developed as a tracking problem, in which the implicit form of dynamics was used. Equations of motion were introduced as path constraints, as well as residual forces and moments acting on the pelvis. To do so, GPOPS-II and IPOPT were employed to solve the optimization problem. Furthermore, OpenSim API was called at each iteration to solve the equations of motion through an inverse dynamic analysis.

RESULTS:

Results presented a high reduction in all six components of residual actuators during the entire task. Moreover, resulting motion after the optimization showed a very similar evolution than the reference motion before the ascending phase of the task. Once the ascending phase started, some coordinates presented a more significant discrepancy compared to the reference, such as the pelvis tilt and lumbar extension.

SIGNIFICANCE:

The findings suggest that the proposed algorithm can deal with dynamic inconsistency in high-speed tasks, obtaining low residual forces and moments while keeping similar kinematics. Hence, it could complement other optimal control algorithms that simulate new motions, relying on dynamically consistent data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Análisis y Desempeño de Tareas / Algoritmos / Ejercicio Físico / Movimiento Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Gait Posture Asunto de la revista: ORTOPEDIA Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Análisis y Desempeño de Tareas / Algoritmos / Ejercicio Físico / Movimiento Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Gait Posture Asunto de la revista: ORTOPEDIA Año: 2019 Tipo del documento: Article