Your browser doesn't support javascript.
loading
Unique Structural Features of the Mitochondrial AAA+ Protease AFG3L2 Reveal the Molecular Basis for Activity in Health and Disease.
Puchades, Cristina; Ding, Bojian; Song, Albert; Wiseman, R Luke; Lander, Gabriel C; Glynn, Steven E.
Afiliación
  • Puchades C; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institu
  • Ding B; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
  • Song A; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institu
  • Wiseman RL; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
  • Lander GC; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Electronic address: glander@scripps.edu.
  • Glynn SE; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA. Electronic address: steven.glynn@stonybrook.edu.
Mol Cell ; 75(5): 1073-1085.e6, 2019 09 05.
Article en En | MEDLINE | ID: mdl-31327635
Mitochondrial AAA+ quality-control proteases regulate diverse aspects of mitochondrial biology through specialized protein degradation, but the underlying mechanisms of these enzymes remain poorly defined. The mitochondrial AAA+ protease AFG3L2 is of particular interest, as genetic mutations localized throughout AFG3L2 are linked to diverse neurodegenerative disorders. However, a lack of structural data has limited our understanding of how mutations impact enzymatic function. Here, we used cryoelectron microscopy (cryo-EM) to determine a substrate-bound structure of the catalytic core of human AFG3L2. This structure identifies multiple specialized structural features that integrate with conserved motifs required for ATP-dependent translocation to unfold and degrade targeted proteins. Many disease-relevant mutations localize to these unique structural features of AFG3L2 and distinctly influence its activity and stability. Our results provide a molecular basis for neurological phenotypes associated with different AFG3L2 mutations and establish a structural framework to understand how different members of the AAA+ superfamily achieve specialized biological functions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Mitocondriales / Proteasas ATP-Dependientes / ATPasas Asociadas con Actividades Celulares Diversas / Mutación Límite: Humans Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Mitocondriales / Proteasas ATP-Dependientes / ATPasas Asociadas con Actividades Celulares Diversas / Mutación Límite: Humans Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article