Surfactant protein-D modulation of pulmonary macrophage phenotype is controlled by S-nitrosylation.
Am J Physiol Lung Cell Mol Physiol
; 317(5): L539-L549, 2019 11 01.
Article
en En
| MEDLINE
| ID: mdl-31411060
Surfactant protein-D (SP-D) is a regulator of pulmonary innate immunity whose oligomeric state can be altered through S-nitrosylation to regulate its signaling function in macrophages. Here, we examined how nitrosylation of SP-D alters the phenotypic response of macrophages to stimuli both in vivo and in vitro. Bronchoalveolar lavage (BAL) from C57BL6/J and SP-D-overexpressing (SP-D OE) mice was incubated with RAW264.7 cells ± LPS. LPS induces the expression of the inflammatory genes Il1b and Nos2, which is reduced 10-fold by SP-D OE-BAL. S-nitrosylation of the SP-D OE-BAL (SNO-SP-D OE-BAL) abrogated this inhibition. SNO-SP-D OE-BAL alone induced Il1b and Nos2 expression. PCR array analysis of macrophages incubated with SP-D OE-BAL (±LPS) shows increased expression of repair genes, Ccl20, Cxcl1, and Vcam1, that was accentuated by LPS. LPS increases inflammatory gene expression, Il1a, Nos2, Tnf, and Ptgs2, which was accentuated by SNO-SP-D OE-BAL but inhibited by SP-D OE-BAL. The transcription factor NF-κB was identified as a target for SNO-SP-D by IPA, which was confirmed by Trans-AM ELISA in vitro. In vivo, SP-D overexpression increases the burden of infection in a Pneumocystis model while increasing cellular recruitment. Expression of iNOS and the production of NO metabolites were significantly reduced in SP-D OE mice relative to C57BL6/J. Inflammatory gene expression was increased in infected C57BL6/J mice but decreased in SP-D OE. SP-D oligomeric structure was disrupted in C57BL6/J infected mice but unaltered within SP-D OE. Thus SP-D modulates macrophage phenotype and the balance of multimeric to trimeric SP-D is critical to this regulation.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Procesamiento Proteico-Postraduccional
/
Infecciones por Pneumocystis
/
Macrófagos Alveolares
/
Proteína D Asociada a Surfactante Pulmonar
/
Compuestos Nitrosos
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Am J Physiol Lung Cell Mol Physiol
Asunto de la revista:
BIOLOGIA MOLECULAR
/
FISIOLOGIA
Año:
2019
Tipo del documento:
Article