Your browser doesn't support javascript.
loading
Detection of atrial fibrillation using discrete-state Markov models and Random Forests.
Kalidas, Vignesh; Tamil, Lakshman S.
Afiliación
  • Kalidas V; Quality of Life Technology Laboratory, Department of Electrical and Computer Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, United States. Electronic address: vignesh.kalidas@utdallas.edu.
  • Tamil LS; Quality of Life Technology Laboratory, Department of Electrical and Computer Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, United States. Electronic address: laxman@utdallas.edu.
Comput Biol Med ; 113: 103386, 2019 10.
Article en En | MEDLINE | ID: mdl-31446318
In this paper, we present a fully automated technique for robust detection of Atrial Fibrillation (AF) episodes in single-lead electrocardiogram (ECG) signals using discrete-state Markov models and Random Forests. METHODS: The ECG signal is first preprocessed using Stationary Wavelet Transforms (SWT) for noise suppression, signal quality assessment and subsequent R-peak detection. Discrete-state Markov probabilities modelling transitions between successive RR intervals along with other statistical quantities derived from the RR-interval series constitute the feature set to perform AF classification using Random Forests. Further enhancement in AF detection is achieved by using a post-processing false positive suppression algorithm based on autocorrelation analysis of the RR-interval series. Datasets: The AF classifier was trained using the Physionet/Computing in Cardiology 2017 AF Challenge dataset and the Atrial Fibrillation Termination Database (AFTDB). The test datasets consist of the MIT-BIH Atrial Fibrillation Database (AFDB) and the MIT-BIH Arrhythmia Database (MITDB). RESULTS: Our algorithms achieved sensitivity, specificity and F-score values of 97.4%, 98.6% and 97.7% respectively on the AFDB dataset and 96.3%, 97.0% and 85.6% respectively on the MITDB dataset. It was also observed that inclusion of the false positive suppression step resulted in a 1.1% increase in specificity and a 4.0% increase in F-score for the MITDB dataset without any decrease in sensitivity. CONCLUSION: The proposed method of AF detection, combining Markov models and Random Forests, achieves high accuracy across multiple databases and demonstrates comparable or superior performance to several other state-of-the-art algorithms.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fibrilación Atrial / Algoritmos / Bases de Datos Factuales / Diagnóstico por Computador / Electrocardiografía / Modelos Cardiovasculares Tipo de estudio: Clinical_trials / Diagnostic_studies / Health_economic_evaluation / Prognostic_studies Límite: Humans Idioma: En Revista: Comput Biol Med Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fibrilación Atrial / Algoritmos / Bases de Datos Factuales / Diagnóstico por Computador / Electrocardiografía / Modelos Cardiovasculares Tipo de estudio: Clinical_trials / Diagnostic_studies / Health_economic_evaluation / Prognostic_studies Límite: Humans Idioma: En Revista: Comput Biol Med Año: 2019 Tipo del documento: Article