Your browser doesn't support javascript.
loading
Large-scale inference of competing endogenous RNA networks with sparse partial correlation.
List, Markus; Dehghani Amirabad, Azim; Kostka, Dennis; Schulz, Marcel H.
Afiliación
  • List M; Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.
  • Dehghani Amirabad A; Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
  • Kostka D; Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.
  • Schulz MH; Cluster of Excellence for Multimodal Computing and Interaction, Saarland University, Saarbrücken, Germany.
Bioinformatics ; 35(14): i596-i604, 2019 07 15.
Article en En | MEDLINE | ID: mdl-31510670
MOTIVATION: MicroRNAs (miRNAs) are important non-coding post-transcriptional regulators that are involved in many biological processes and human diseases. Individual miRNAs may regulate hundreds of genes, giving rise to a complex gene regulatory network in which transcripts carrying miRNA binding sites act as competing endogenous RNAs (ceRNAs). Several methods for the analysis of ceRNA interactions exist, but these do often not adjust for statistical confounders or address the problem that more than one miRNA interacts with a target transcript. RESULTS: We present SPONGE, a method for the fast construction of ceRNA networks. SPONGE uses 'multiple sensitivity correlation', a newly defined measure for which we can estimate a distribution under a null hypothesis. SPONGE can accurately quantify the contribution of multiple miRNAs to a ceRNA interaction with a probabilistic model that addresses previously neglected confounding factors and allows fast P-value calculation, thus outperforming existing approaches. We applied SPONGE to paired miRNA and gene expression data from The Cancer Genome Atlas for studying global effects of miRNA-mediated cross-talk. Our results highlight already established and novel protein-coding and non-coding ceRNAs which could serve as biomarkers in cancer. AVAILABILITY AND IMPLEMENTATION: SPONGE is available as an R/Bioconductor package (doi: 10.18129/B9.bioc.SPONGE). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ARN / Neoplasias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ARN / Neoplasias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: Alemania