Your browser doesn't support javascript.
loading
Probing and Manipulating Carrier Interlayer Diffusion in van der Waals Multilayer by Constructing Type-I Heterostructure.
Zheng, Weihao; Zheng, Biyuan; Jiang, Ying; Yan, Changlin; Chen, Shula; Liu, Ying; Sun, Xinxia; Zhu, Chenguang; Qi, Zhaoyang; Yang, Tiefeng; Huang, Wei; Fan, Peng; Jiang, Feng; Wang, Xiaoxia; Zhuang, Xiujuan; Li, Dong; Li, Ziwei; Xie, Wei; Ji, Wei; Wang, Xiao; Pan, Anlian.
Afiliación
  • Zheng W; Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China.
  • Zheng B; School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China.
  • Jiang Y; Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China.
  • Yan C; School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China.
  • Chen S; School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China.
  • Liu Y; Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China.
  • Sun X; Beijing Key Laboratory of Optoelectronic Functional Material & Micro-Nano Devices, Department of Physics , Renmin University of China , Beijing 100872 , China.
  • Zhu C; Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China.
  • Qi Z; Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China.
  • Yang T; Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China.
  • Huang W; Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China.
  • Fan P; School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China.
  • Jiang F; School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China.
  • Wang X; School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China.
  • Zhuang X; School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China.
  • Li D; School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China.
  • Li Z; School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China.
  • Xie W; School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China.
  • Ji W; Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China.
  • Wang X; Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometriscs and College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China.
  • Pan A; Quantum Institute for Light and Atoms, School of Physics and Material Science , East China Normal University , Shanghai , 200241 , China.
Nano Lett ; 19(10): 7217-7225, 2019 10 09.
Article en En | MEDLINE | ID: mdl-31545057
van der Waals multilayer heterostructures have drawn increasing attention due to the potential for achieving high-performance photonic and optoelectronic devices. However, the carrier interlayer transportation behavior in multilayer structures, which is essential for determining the device performance, remains unrevealed. Here, we report a general strategy for studying and manipulating the carrier interlayer transportation in van der Waals multilayers by constructing type-I heterostructures, with a desired narrower bandgap monolayer acting as a carrier extraction layer. For heterostructures comprised of multilayer PbI2 and monolayer WS2, we find similar interlayer diffusion coefficients of ∼0.039 and ∼0.032 cm2 s-1 for electrons and holes in the PbI2 multilayer by fitting the time-resolved carrier dynamics based on the diffusion model. Because of the balanced carrier interlayer diffusion and the injection process at the heterointerface, the photoluminescence emission of the bottom WS2 monolayer is greatly enhanced by up to 106-fold at an optimized PbI2 thickness of the heterostructure. Our results provide valuable information on carrier interlayer transportation in van der Waals multilayer structures and pave the way for utilizing carrier behaviors to improve device performances.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: China