Your browser doesn't support javascript.
loading
MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions.
Baran, Yael; Bercovich, Akhiad; Sebe-Pedros, Arnau; Lubling, Yaniv; Giladi, Amir; Chomsky, Elad; Meir, Zohar; Hoichman, Michael; Lifshitz, Aviezer; Tanay, Amos.
Afiliación
  • Baran Y; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
  • Bercovich A; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
  • Sebe-Pedros A; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
  • Lubling Y; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
  • Giladi A; Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
  • Chomsky E; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
  • Meir Z; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
  • Hoichman M; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
  • Lifshitz A; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
  • Tanay A; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel. amos.tanay@weizmann.ac.il.
Genome Biol ; 20(1): 206, 2019 10 11.
Article en En | MEDLINE | ID: mdl-31604482
scRNA-seq profiles each represent a highly partial sample of mRNA molecules from a unique cell that can never be resampled, and robust analysis must separate the sampling effect from biological variance. We describe a methodology for partitioning scRNA-seq datasets into metacells: disjoint and homogenous groups of profiles that could have been resampled from the same cell. Unlike clustering analysis, our algorithm specializes at obtaining granular as opposed to maximal groups. We show how to use metacells as building blocks for complex quantitative transcriptional maps while avoiding data smoothing. Our algorithms are implemented in the MetaCell R/C++ software package.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Análisis de Secuencia de ARN / Análisis de la Célula Individual Tipo de estudio: Evaluation_studies Idioma: En Revista: Genome Biol Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Israel

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Análisis de Secuencia de ARN / Análisis de la Célula Individual Tipo de estudio: Evaluation_studies Idioma: En Revista: Genome Biol Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Israel