MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions.
Genome Biol
; 20(1): 206, 2019 10 11.
Article
en En
| MEDLINE
| ID: mdl-31604482
scRNA-seq profiles each represent a highly partial sample of mRNA molecules from a unique cell that can never be resampled, and robust analysis must separate the sampling effect from biological variance. We describe a methodology for partitioning scRNA-seq datasets into metacells: disjoint and homogenous groups of profiles that could have been resampled from the same cell. Unlike clustering analysis, our algorithm specializes at obtaining granular as opposed to maximal groups. We show how to use metacells as building blocks for complex quantitative transcriptional maps while avoiding data smoothing. Our algorithms are implemented in the MetaCell R/C++ software package.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Programas Informáticos
/
Análisis de Secuencia de ARN
/
Análisis de la Célula Individual
Tipo de estudio:
Evaluation_studies
Idioma:
En
Revista:
Genome Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
/
GENETICA
Año:
2019
Tipo del documento:
Article
País de afiliación:
Israel