Your browser doesn't support javascript.
loading
Robust hypergraph regularized non-negative matrix factorization for sample clustering and feature selection in multi-view gene expression data.
Yu, Na; Gao, Ying-Lian; Liu, Jin-Xing; Wang, Juan; Shang, Junliang.
Afiliación
  • Yu N; School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826, China.
  • Gao YL; Library of Qufu Normal University, Qufu Normal University, Rizhao, 276826, China.
  • Liu JX; School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826, China. sdcavell@126.com.
  • Wang J; School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826, China. wangjuansdu@163.com.
  • Shang J; School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826, China.
Hum Genomics ; 13(Suppl 1): 46, 2019 10 22.
Article en En | MEDLINE | ID: mdl-31639067
BACKGROUND: As one of the most popular data representation methods, non-negative matrix decomposition (NMF) has been widely concerned in the tasks of clustering and feature selection. However, most of the previously proposed NMF-based methods do not adequately explore the hidden geometrical structure in the data. At the same time, noise and outliers are inevitably present in the data. RESULTS: To alleviate these problems, we present a novel NMF framework named robust hypergraph regularized non-negative matrix factorization (RHNMF). In particular, the hypergraph Laplacian regularization is imposed to capture the geometric information of original data. Unlike graph Laplacian regularization which captures the relationship between pairwise sample points, it captures the high-order relationship among more sample points. Moreover, the robustness of the RHNMF is enhanced by using the L2,1-norm constraint when estimating the residual. This is because the L2,1-norm is insensitive to noise and outliers. CONCLUSIONS: Clustering and common abnormal expression gene (com-abnormal expression gene) selection are conducted to test the validity of the RHNMF model. Extensive experimental results on multi-view datasets reveal that our proposed model outperforms other state-of-the-art methods.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Regulación Neoplásica de la Expresión Génica / Bases de Datos Genéticas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Hum Genomics Asunto de la revista: GENETICA Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Regulación Neoplásica de la Expresión Génica / Bases de Datos Genéticas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Hum Genomics Asunto de la revista: GENETICA Año: 2019 Tipo del documento: Article País de afiliación: China