Your browser doesn't support javascript.
loading
Highly Efficient Solution-Processed Thermally Activated Delayed Fluorescence Bluish-Green and Hybrid White Organic Light-Emitting Diodes Using Novel Bipolar Host Materials.
Ngo, Phu Si; Hung, Miao-Ken; Tsai, Kuen-Wei; Sharma, Sunil; Chen, Show-An.
Afiliación
  • Ngo PS; Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan.
  • Hung MK; Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan.
  • Tsai KW; Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan.
  • Sharma S; Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan.
  • Chen SA; Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan.
ACS Appl Mater Interfaces ; 11(49): 45939-45948, 2019 Dec 11.
Article en En | MEDLINE | ID: mdl-31724847
ABSTRACT
Two pyridine-containing bipolar host materials with high triplet energy, 9,10-dihydro-9,9-dimethyl-10-(3-(6-(3-(9,9-dimethylacridin-10(9H)-yl)phenyl)pyridin-2-yl)phenyl acridin (DDMACPy) and N-(3-(6-(3-(diphenyl amino)phenyl)pyridin-2-yl)phenyl)-N-phenylbenzenamine (DTPAPy), are synthesized from the modification of the commonly adapted host material 2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine (DCzPPy). The highest occupied molecular orbital levels of DDMACPy (5.50 eV) and DTPAPy (5.60 eV) are found to be shallower than that of DCzPPy (5.90 eV) that leads to the improvement in hole injection from the hole transport layer PEDOTPSS (WF = 5.10 eV). These host materials are used in the emitting layer of bluish-green organic light-emitting diode (OLED) with the thermally activated delayed fluorescence (TADF) emitter, 9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine, as the guest. The DDMACPy-based device shows the highest performance among them, with the maximum external quantum efficiency (EQEmax), current efficiency (CEmax), and power efficiency (PEmax) of 21.0%, 53.1 cd A-1, and 44.0 lm W-1 at CIE (0.17, 0.42), respectively. By further doping with the red-emitting phosphor iridium(III) bis(2-phenylquinoline)(2,2,6,6-tetramethylheptane-3,5-ionate) [Ir(dpm)PQ2] and yellow-emitting phosphor iridium(III) bis(4-(4-t-butylphenyl)thieno[3,2-c]pyridinato-N,C20)acetylacetonate (PO-01-TB) emitters into the bluish-green emitting layer, a TADF-phosphor hybrid white OLED (T-P WOLED) is obtained with excellent EQEmax, CEmax, and PEmax of 17.4%, 48.7 cd A-1, and 44.5 lm W-1 at CIE (0.35, 0.44), respectively. Moreover, both the bluish-green and WOLED show a low efficiency roll-off with external quantum efficiencies at the brightness of 1000 cd m-2 (EQE1000) of 18.7 and 16.2%, respectively, which are the highest performance records among the solution-processed TADF bluish-green and T-P WOLEDs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article País de afiliación: Taiwán