Your browser doesn't support javascript.
loading
Three-Dimensional Superconducting Nanohelices Grown by He+-Focused-Ion-Beam Direct Writing.
Córdoba, Rosa; Mailly, Dominique; Rezaev, Roman O; Smirnova, Ekaterina I; Schmidt, Oliver G; Fomin, Vladimir M; Zeitler, Uli; Guillamón, Isabel; Suderow, Hermann; De Teresa, José María.
Afiliación
  • Córdoba R; Instituto de Ciencia de Materiales de Aragón (ICMA) , Universidad de Zaragoza-CSIC , E-50009 Zaragoza , Spain.
  • Mailly D; Departamento de Física de la Materia Condensada , Universidad de Zaragoza , E-50009 Zaragoza , Spain.
  • Rezaev RO; Instituto de Ciencia Molecular , Universitat de València , Catedrático José Beltrán 2 , 46980 Paterna , Spain.
  • Smirnova EI; Centre de Nanosciences et de Nanotechnologies , CNRS, Université Paris Sud, Université Paris Saclay , 91120 Palaiseau , France.
  • Schmidt OG; Institute for Integrative Nanosciences, Leibniz IFW Dresden , Helmholtzstraße 20 , D-01069 Dresden , Germany.
  • Fomin VM; Tomsk Polytechnic University , Lenin Ave. 30 , 634050 Tomsk , Russia.
  • Zeitler U; Institute for Integrative Nanosciences, Leibniz IFW Dresden , Helmholtzstraße 20 , D-01069 Dresden , Germany.
  • Guillamón I; Institute for Integrative Nanosciences, Leibniz IFW Dresden , Helmholtzstraße 20 , D-01069 Dresden , Germany.
  • Suderow H; Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN) , TU Chemnitz , Rosenbergstraße 6 , D-09126 Chemnitz , Germany.
  • De Teresa JM; Institute for Integrative Nanosciences, Leibniz IFW Dresden , Helmholtzstraße 20 , D-01069 Dresden , Germany.
Nano Lett ; 19(12): 8597-8604, 2019 12 11.
Article en En | MEDLINE | ID: mdl-31730351
ABSTRACT
Novel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He+ focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga+ FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters. Our results show the smallest and highest-densely packed nanohelix ever fabricated so far, with dimensions of 100 nm in diameter and aspect ratio up to 65. These nanohelices become superconducting at 7 K and show a large critical magnetic field and critical current density. In addition, given its helical 3D geometry, fingerprints of vortex and phase-slip patterns are experimentally identified and supported by numerical simulations based on the time-dependent Ginzburg-Landau equation. These results can be understood by the helical geometry that induces specific superconducting properties and paves the way for future electronic components, such as sensors, energy storage elements, and nanoantennas, based on 3D compact nanosuperconductors.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: España