Your browser doesn't support javascript.
loading
PARAMETER AND UNCERTAINTY ESTIMATION FOR DYNAMICAL SYSTEMS USING SURROGATE STOCHASTIC PROCESSES.
Chung, Matthias; Binois, Mickaël; Gramacy, Robert B; Bardsley, Johnathan M; Moquin, David J; Smith, Amanda P; Smith, Amber M.
Afiliación
  • Chung M; Department of Mathematics, Computational Modeling and Data Analytics Division, Academy of Integrated Science, Virginia Tech, Blacksburg, VA 24061.
  • Binois M; Booth School of Business, University of Chicago, Chicago, IL 60637.
  • Gramacy RB; Department of Statistics, Virginia Tech, Blacksburg, VA 24061.
  • Bardsley JM; Department of Mathematical Sciences, University of Montana, Missoula, MT 59812.
  • Moquin DJ; Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN 38103.
  • Smith AP; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103.
  • Smith AM; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103.
SIAM J Sci Comput ; 41(4): A2212-A2238, 2019.
Article en En | MEDLINE | ID: mdl-31749599
ABSTRACT
Inference on unknown quantities in dynamical systems via observational data is essential for providing meaningful insight, furnishing accurate predictions, enabling robust control, and establishing appropriate designs for future experiments. Merging mathematical theory with empirical measurements in a statistically coherent way is critical and challenges abound, e.g., ill-posedness of the parameter estimation problem, proper regularization and incorporation of prior knowledge, and computational limitations. To address these issues, we propose a new method for learning parameterized dynamical systems from data. We first customize and fit a surrogate stochastic process directly to observational data, front-loading with statistical learning to respect prior knowledge (e.g., smoothness), cope with challenging data features like heteroskedasticity, heavy tails, and censoring. Then, samples of the stochastic process are used as "surrogate data" and point estimates are computed via ordinary point estimation methods in a modular fashion. Attractive features of this two-step approach include modularity and trivial parallelizability. We demonstrate its advantages on a predator-prey simulation study and on a real-world application involving within-host influenza virus infection data paired with a viral kinetic model, with comparisons to a more conventional Markov chain Monte Carlo (MCMC) based Bayesian approach.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: SIAM J Sci Comput Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: SIAM J Sci Comput Año: 2019 Tipo del documento: Article