Your browser doesn't support javascript.
loading
NeoFuse: predicting fusion neoantigens from RNA sequencing data.
Fotakis, Georgios; Rieder, Dietmar; Haider, Marlene; Trajanoski, Zlatko; Finotello, Francesca.
Afiliación
  • Fotakis G; Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck 6020, Austria.
  • Rieder D; Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck 6020, Austria.
  • Haider M; Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck 6020, Austria.
  • Trajanoski Z; Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck 6020, Austria.
  • Finotello F; Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck 6020, Austria.
Bioinformatics ; 36(7): 2260-2261, 2020 04 01.
Article en En | MEDLINE | ID: mdl-31755900
SUMMARY: Gene fusions can generate immunogenic neoantigens that mediate anticancer immune responses. However, their computational prediction from RNA sequencing (RNA-seq) data requires deep bioinformatics expertise to assembly a computational workflow covering the prediction of: fusion transcripts, their translated proteins and peptides, Human Leukocyte Antigen (HLA) types, and peptide-HLA binding affinity. Here, we present NeoFuse, a computational pipeline for the prediction of fusion neoantigens from tumor RNA-seq data. NeoFuse can be applied to cancer patients' RNA-seq data to identify fusion neoantigens that might expand the repertoire of suitable targets for immunotherapy. AVAILABILITY AND IMPLEMENTATION: NeoFuse source code and documentation are available under GPLv3 license at https://icbi.i-med.ac.at/NeoFuse/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ARN / Antígenos de Neoplasias Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Austria

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ARN / Antígenos de Neoplasias Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Austria