Your browser doesn't support javascript.
loading
Antibody complementarity determining region design using high-capacity machine learning.
Liu, Ge; Zeng, Haoyang; Mueller, Jonas; Carter, Brandon; Wang, Ziheng; Schilz, Jonas; Horny, Geraldine; Birnbaum, Michael E; Ewert, Stefan; Gifford, David K.
Afiliación
  • Liu G; MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA.
  • Zeng H; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Mueller J; MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA.
  • Carter B; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Wang Z; MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA.
  • Schilz J; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Horny G; MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA.
  • Birnbaum ME; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Ewert S; MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA.
  • Gifford DK; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
Bioinformatics ; 36(7): 2126-2133, 2020 04 01.
Article en En | MEDLINE | ID: mdl-31778140
MOTIVATION: The precise targeting of antibodies and other protein therapeutics is required for their proper function and the elimination of deleterious off-target effects. Often the molecular structure of a therapeutic target is unknown and randomized methods are used to design antibodies without a model that relates antibody sequence to desired properties. RESULTS: Here, we present Ens-Grad, a machine learning method that can design complementarity determining regions of human Immunoglobulin G antibodies with target affinities that are superior to candidates derived from phage display panning experiments. We also demonstrate that machine learning can improve target specificity by the modular composition of models from different experimental campaigns, enabling a new integrative approach to improving target specificity. Our results suggest a new path for the discovery of therapeutic molecules by demonstrating that predictive and differentiable models of antibody binding can be learned from high-throughput experimental data without the need for target structural data. AVAILABILITY AND IMPLEMENTATION: Sequencing data of the phage panning experiment are deposited at NIH's Sequence Read Archive (SRA) under the accession number SRP158510. We make our code available at https://github.com/gifford-lab/antibody-2019. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Regiones Determinantes de Complementariedad / Aprendizaje Automático Tipo de estudio: Clinical_trials / Prognostic_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Regiones Determinantes de Complementariedad / Aprendizaje Automático Tipo de estudio: Clinical_trials / Prognostic_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos