Your browser doesn't support javascript.
loading
Mechanisms of hyperexcitability in Alzheimer's disease hiPSC-derived neurons and cerebral organoids vs isogenic controls.
Ghatak, Swagata; Dolatabadi, Nima; Trudler, Dorit; Zhang, XiaoTong; Wu, Yin; Mohata, Madhav; Ambasudhan, Rajesh; Talantova, Maria; Lipton, Stuart A.
Afiliación
  • Ghatak S; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.
  • Dolatabadi N; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.
  • Trudler D; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.
  • Zhang X; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.
  • Wu Y; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.
  • Mohata M; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.
  • Ambasudhan R; Neurodegenerative Disease Center, Scintillon Institute, San Diego, United States.
  • Talantova M; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.
  • Lipton SA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.
Elife ; 82019 11 29.
Article en En | MEDLINE | ID: mdl-31782729
Human Alzheimer's disease (AD) brains and transgenic AD mouse models manifest hyperexcitability. This aberrant electrical activity is caused by synaptic dysfunction that represents the major pathophysiological correlate of cognitive decline. However, the underlying mechanism for this excessive excitability remains incompletely understood. To investigate the basis for the hyperactivity, we performed electrophysiological and immunofluorescence studies on hiPSC-derived cerebrocortical neuronal cultures and cerebral organoids bearing AD-related mutations in presenilin-1 or amyloid precursor protein vs. isogenic gene corrected controls. In the AD hiPSC-derived neurons/organoids, we found increased excitatory bursting activity, which could be explained in part by a decrease in neurite length. AD hiPSC-derived neurons also displayed increased sodium current density and increased excitatory and decreased inhibitory synaptic activity. Our findings establish hiPSC-derived AD neuronal cultures and organoids as a relevant model of early AD pathophysiology and provide mechanistic insight into the observed hyperexcitability.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Potenciales de Acción / Cerebro / Fenómenos Electrofisiológicos / Células Madre Pluripotentes Inducidas / Enfermedad de Alzheimer / Excitabilidad Cortical / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Elife Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Potenciales de Acción / Cerebro / Fenómenos Electrofisiológicos / Células Madre Pluripotentes Inducidas / Enfermedad de Alzheimer / Excitabilidad Cortical / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Elife Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos