Your browser doesn't support javascript.
loading
Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants.
Middelkamp, Sjors; Vlaar, Judith M; Giltay, Jacques; Korzelius, Jerome; Besselink, Nicolle; Boymans, Sander; Janssen, Roel; de la Fonteijne, Lisanne; van Binsbergen, Ellen; van Roosmalen, Markus J; Hochstenbach, Ron; Giachino, Daniela; Talkowski, Michael E; Kloosterman, Wigard P; Cuppen, Edwin.
Afiliación
  • Middelkamp S; Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
  • Vlaar JM; Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
  • Giltay J; Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands.
  • Korzelius J; Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
  • Besselink N; Max Planck Institute for Biology of Aging, Cologne, Germany.
  • Boymans S; Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
  • Janssen R; Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
  • de la Fonteijne L; Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
  • van Binsbergen E; Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
  • van Roosmalen MJ; Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands.
  • Hochstenbach R; Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
  • Giachino D; Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands.
  • Talkowski ME; Medical Genetics Unit, Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.
  • Kloosterman WP; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
  • Cuppen E; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Genome Med ; 11(1): 79, 2019 12 04.
Article en En | MEDLINE | ID: mdl-31801603
BACKGROUND: Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. METHODS: We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. RESULTS: In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. CONCLUSIONS: These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenotipo / Variación Genética / Predisposición Genética a la Enfermedad / Estudios de Asociación Genética / Enfermedades Genéticas Congénitas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Genome Med Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenotipo / Variación Genética / Predisposición Genética a la Enfermedad / Estudios de Asociación Genética / Enfermedades Genéticas Congénitas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Genome Med Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos