Your browser doesn't support javascript.
loading
Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution.
Karacosta, Loukia G; Anchang, Benedict; Ignatiadis, Nikolaos; Kimmey, Samuel C; Benson, Jalen A; Shrager, Joseph B; Tibshirani, Robert; Bendall, Sean C; Plevritis, Sylvia K.
Afiliación
  • Karacosta LG; Department of Biomedical Data Science, Stanford University, Stanford, USA.
  • Anchang B; Department of Radiology, Stanford University, Stanford, USA.
  • Ignatiadis N; Department of Biomedical Data Science, Stanford University, Stanford, USA.
  • Kimmey SC; Department of Radiology, Stanford University, Stanford, USA.
  • Benson JA; Department of Statistics, Stanford University, Stanford, USA.
  • Shrager JB; Department of Pathology, Stanford University, Stanford, USA.
  • Tibshirani R; Department of Cardiothoracic Surgery, Stanford University, Stanford, USA.
  • Bendall SC; Department of Cardiothoracic Surgery, Stanford University, Stanford, USA.
  • Plevritis SK; Department of Biomedical Data Science, Stanford University, Stanford, USA.
Nat Commun ; 10(1): 5587, 2019 12 06.
Article en En | MEDLINE | ID: mdl-31811131
Elucidating the spectrum of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states in clinical samples promises insights on cancer progression and drug resistance. Using mass cytometry time-course analysis, we resolve lung cancer EMT states through TGFß-treatment and identify, through TGFß-withdrawal, a distinct MET state. We demonstrate significant differences between EMT and MET trajectories using a computational tool (TRACER) for reconstructing trajectories between cell states. In addition, we construct a lung cancer reference map of EMT and MET states referred to as the EMT-MET PHENOtypic STAte MaP (PHENOSTAMP). Using a neural net algorithm, we project clinical samples onto the EMT-MET PHENOSTAMP to characterize their phenotypic profile with single-cell resolution in terms of our in vitro EMT-MET analysis. In summary, we provide a framework to phenotypically characterize clinical samples in the context of in vitro EMT-MET findings which could help assess clinical relevance of EMT in cancer in future studies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Transición Epitelial-Mesenquimal / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Transición Epitelial-Mesenquimal / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos