Your browser doesn't support javascript.
loading
Ordered multinomial regression for genetic association analysis of ordinal phenotypes at Biobank scale.
German, Christopher A; Sinsheimer, Janet S; Klimentidis, Yann C; Zhou, Hua; Zhou, Jin J.
Afiliación
  • German CA; Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California.
  • Sinsheimer JS; Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California.
  • Klimentidis YC; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California.
  • Zhou H; Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.
  • Zhou JJ; Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona.
Genet Epidemiol ; 44(3): 248-260, 2020 04.
Article en En | MEDLINE | ID: mdl-31879980
Logistic regression is the primary analysis tool for binary traits in genome-wide association studies (GWAS). Multinomial regression extends logistic regression to multiple categories. However, many phenotypes more naturally take ordered, discrete values. Examples include (a) subtypes defined from multiple sources of clinical information and (b) derived phenotypes generated by specific phenotyping algorithms for electronic health records (EHR). GWAS of ordinal traits have been problematic. Dichotomizing can lead to a range of arbitrary cutoff values, generating inconsistent, hard to interpret results. Using multinomial regression ignores trait value hierarchy and potentially loses power. Treating ordinal data as quantitative can lead to misleading inference. To address these issues, we analyze ordinal traits with an ordered, multinomial model. This approach increases power and leads to more interpretable results. We derive efficient algorithms for computing test statistics, making ordinal trait GWAS computationally practical for Biobank scale data. Our method is available as a Julia package OrdinalGWAS.jl. Application to a COPDGene study confirms previously found signals based on binary case-control status, but with more significance. Additionally, we demonstrate the capability of our package to run on UK Biobank data by analyzing hypertension as an ordinal trait.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bancos de Muestras Biológicas / Estudio de Asociación del Genoma Completo Tipo de estudio: Diagnostic_studies / Observational_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Genet Epidemiol Asunto de la revista: EPIDEMIOLOGIA / GENETICA MEDICA Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bancos de Muestras Biológicas / Estudio de Asociación del Genoma Completo Tipo de estudio: Diagnostic_studies / Observational_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Genet Epidemiol Asunto de la revista: EPIDEMIOLOGIA / GENETICA MEDICA Año: 2020 Tipo del documento: Article