Your browser doesn't support javascript.
loading
Improving synthetic methylotrophy via dynamic formaldehyde regulation of pentose phosphate pathway genes and redox perturbation.
Rohlhill, Julia; Gerald Har, Jie Ren; Antoniewicz, Maciek R; Papoutsakis, Eleftherios T.
Afiliación
  • Rohlhill J; Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA; Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE, 19711, USA.
  • Gerald Har JR; Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.
  • Antoniewicz MR; Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.
  • Papoutsakis ET; Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA; Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE, 19711, USA. Electronic address: epaps@udel.edu.
Metab Eng ; 57: 247-255, 2020 01.
Article en En | MEDLINE | ID: mdl-31881281
ABSTRACT
Escherichia coli is an ideal choice for constructing synthetic methylotrophs capable of utilizing the non-native substrate methanol as a carbon and energy source. All current E. coli-based synthetic methylotrophs require co-substrates. They display variable levels of methanol-carbon incorporation due to a lack of native regulatory control of biosynthetic pathways, as E. coli does not recognize methanol as a proper substrate despite its ability to catabolize it. Here, using the E. coli formaldehyde-inducible promoter Pfrm, we implement dynamic expression control of select pentose-phosphate genes in response to the formaldehyde produced upon methanol oxidation. Genes under Pfrm control exhibited 8- to 30-fold transcriptional upregulation during growth on methanol. Formaldehyde-induced episomal expression of the B. methanolicus rpe and tkt genes involved in the regeneration of ribulose 5-phosphate required for formaldehyde fixation led to significantly improved methanol assimilation into intracellular metabolites, including a 2-fold increase of 13C-methanol into glutamate. Using a simple strategy for redox perturbation by deleting the E. coli NAD-dependent malate dehydrogenase gene maldh, we demonstrate 5-fold improved biomass formation of cells growing on methanol in the presence of a small concentration of yeast extract. Further improvements in methanol utilization are achieved via adaptive laboratory evolution and heterologous rpe and tkt expression. A short-term in vivo13C-methanol labeling assay was used to determine methanol assimilation activity for Δmaldh strains, and demonstrated dramatically higher labeling in intracellular metabolites, including a 6-fold and 1.8-fold increase in glycine labeling for the rpe/tkt and evolved strains, respectively. The combination of formaldehyde-controlled pentose phosphate pathway expression and redox perturbation with the maldh knock-out greatly improved both growth benefit with methanol and methanol carbon incorporation into intracellular metabolites.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Vía de Pentosa Fosfato / Regulación Bacteriana de la Expresión Génica / Escherichia coli / Ingeniería Metabólica / Formaldehído / Microorganismos Modificados Genéticamente Idioma: En Revista: Metab Eng Asunto de la revista: ENGENHARIA BIOMEDICA / METABOLISMO Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Vía de Pentosa Fosfato / Regulación Bacteriana de la Expresión Génica / Escherichia coli / Ingeniería Metabólica / Formaldehído / Microorganismos Modificados Genéticamente Idioma: En Revista: Metab Eng Asunto de la revista: ENGENHARIA BIOMEDICA / METABOLISMO Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos