Your browser doesn't support javascript.
loading
Local modulation of the Wnt/ß-catenin and bone morphogenic protein (BMP) pathways recapitulates rib defects analogous to cerebro-costo-mandibular syndrome.
Turner, Benedict R H; Itasaki, Nobue.
Afiliación
  • Turner BRH; Faculty of Health Sciences, University of Bristol, Bristol, UK.
  • Itasaki N; Faculty of Health Sciences, University of Bristol, Bristol, UK.
J Anat ; 236(5): 931-945, 2020 05.
Article en En | MEDLINE | ID: mdl-31884688
Ribs are seldom affected by developmental disorders, however, multiple defects in rib structure are observed in the spliceosomal disease cerebro-costo-mandibular syndrome (CCMS). These defects include rib gaps, found in the posterior part of the costal shaft in multiple ribs, as well as missing ribs, shortened ribs and abnormal costotransverse articulations, which result in inadequate ventilation at birth and high perinatal mortality. The genetic mechanism of CCMS is a loss-of-function mutation in SNRPB, a component of the major spliceosome, and knockdown of this gene in vitro affects the activity of the Wnt/ß-catenin and bone morphogenic protein (BMP) pathways. The aim of the present study was to investigate whether altering these pathways in vivo can recapitulate rib gaps and other rib abnormalities in the model animal. Chick embryos were implanted with beads soaked in Wnt/ß-catenin and BMP pathway modulators during somitogenesis, and incubated until the ribs were formed. Some embryos were harvested in the preceding days for analysis of the chondrogenic marker Sox9, to determine whether pathway modulation affected somite patterning or chondrogenesis. Wnt/ß-catenin inhibition manifested characteristic rib phenotypes seen in CCMS, including rib gaps (P < 0.05) and missing ribs (P < 0.05). BMP pathway activation did not cause rib gaps but yielded missing rib (P < 0.01) and shortened rib phenotypes (P < 0.05). A strong association with vertebral phenotypes was also noted with BMP4 (P < 0.001), including scoliosis (P < 0.05), a feature associated with CCMS. Reduced expression of Sox9 was detected with Wnt/ß-catenin inhibition, indicating that inhibition of chondrogenesis precipitated the rib defects in the presence of Wnt/ß-catenin inhibitors. BMP pathway activators also reduced Sox9 expression, indicating an interruption of somite patterning in the manifestation of rib defects with BMP4. The present study demonstrates that local inhibition of the Wnt/ß-catenin and activation of the BMP pathway can recapitulate rib defects, such as those observed in CCMS. The balance of Wnt/ß-catenin and BMP in the somite is vital for correct rib morphogenesis, and alteration of the activity of these two pathways in CCMS may perturb this balance during somite patterning, leading to the observed rib defects.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Costillas / Proteínas Morfogenéticas Óseas / Proteínas Nucleares snRNP / Factor de Transcripción SOX9 / Vía de Señalización Wnt / Discapacidad Intelectual / Micrognatismo Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Anat Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Costillas / Proteínas Morfogenéticas Óseas / Proteínas Nucleares snRNP / Factor de Transcripción SOX9 / Vía de Señalización Wnt / Discapacidad Intelectual / Micrognatismo Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Anat Año: 2020 Tipo del documento: Article