Your browser doesn't support javascript.
loading
MAGI1 Inhibits the Proliferation, Migration and Invasion of Glioma Cells.
Li, Zhong-Yan; Li, Xue-Hua; Tian, Guang-Wei; Zhang, Dong-Yong; Gao, Hai; Wang, Zhen-Yu.
Afiliación
  • Li ZY; Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China.
  • Li XH; Department of Neurosurgery, Fuxin Central Hospital, Fuxin, People's Republic of China.
  • Tian GW; Department of Neurosurgery, Fuxin Central Hospital, Fuxin, People's Republic of China.
  • Zhang DY; Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China.
  • Gao H; Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China.
  • Wang ZY; Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China.
Onco Targets Ther ; 12: 11281-11290, 2019.
Article en En | MEDLINE | ID: mdl-31908493
ABSTRACT

BACKGROUND:

Membrane-associated guanylate kinase inverted repeat member 1 (MAGI1) acts as a tumor suppressor in a variety of tumors; however, its expression and biological function in glioma are still unknown.

METHODS:

MAGI1 expression in glioma was examined by immunohistochemistry. In addition, overexpression of MAGI1 in U87 and U373 cells, colony formation and MTT assays were used to evaluate cell proliferation, Transwell assays to determine cell migration and invasion, and a xenograft model established using U87 cells to evaluate the effect of MAGI1 overexpression in vivo. Western blot assays were used to analyze the Akt, MMP2, MMP9 and E-cadherin/N-cadherin/vimentin pathway changes after overexpression of MAGI1.

RESULTS:

We demonstrated that MAGI1 was expressed at low levels in glioma. Low MAGI1 expression was positively correlated with the malignant progression of glioma and indicated a poor prognosis. Moreover, we found that overexpressed MAGI1 inhibited the proliferation, migration and invasion of glioma cells by regulating cell growth and EMT through Akt, MMP2, MMP9 and the E-cadherin/N-cadherin/vimentin pathway.

CONCLUSION:

These findings demonstrate a novel function of MAGI1 in glioma progression and suggest that MAGI1 might be a target for the diagnosis and treatment of glioma.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Onco Targets Ther Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Onco Targets Ther Año: 2019 Tipo del documento: Article