Your browser doesn't support javascript.
loading
EPIFANY: A Method for Efficient High-Confidence Protein Inference.
Pfeuffer, Julianus; Sachsenberg, Timo; Dijkstra, Tjeerd M H; Serang, Oliver; Reinert, Knut; Kohlbacher, Oliver.
Afiliación
  • Pfeuffer J; Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany.
  • Sachsenberg T; Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany.
  • Dijkstra TMH; Algorithmic Bioinformatics, Department of Bioinformatics, Freie Universität Berlin, 14195 Berlin, Germany.
  • Serang O; Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany.
  • Reinert K; Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany.
  • Kohlbacher O; Biomolecular Interactions, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
J Proteome Res ; 19(3): 1060-1072, 2020 03 06.
Article en En | MEDLINE | ID: mdl-31975601
Accurate protein inference in the presence of shared peptides is still one of the key problems in bottom-up proteomics. Most protein inference tools employing simple heuristic inference strategies are efficient but exhibit reduced accuracy. More advanced probabilistic methods often exhibit better inference quality but tend to be too slow for large data sets. Here, we present a novel protein inference method, EPIFANY, combining a loopy belief propagation algorithm with convolution trees for efficient processing of Bayesian networks. We demonstrate that EPIFANY combines the reliable protein inference of Bayesian methods with significantly shorter runtimes. On the 2016 iPRG protein inference benchmark data, EPIFANY is the only tested method that finds all true-positive proteins at a 5% protein false discovery rate (FDR) without strict prefiltering on the peptide-spectrum match (PSM) level, yielding an increase in identification performance (+10% in the number of true positives and +14% in partial AUC) compared to previous approaches. Even very large data sets with hundreds of thousands of spectra (which are intractable with other Bayesian and some non-Bayesian tools) can be processed with EPIFANY within minutes. The increased inference quality including shared peptides results in better protein inference results and thus increased robustness of the biological hypotheses generated. EPIFANY is available as open-source software for all major platforms at https://OpenMS.de/epifany.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Proteómica Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Proteómica Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Alemania