Your browser doesn't support javascript.
loading
Fidelity imposed network edit (FINE) for solving ill-posed image reconstruction.
Zhang, Jinwei; Liu, Zhe; Zhang, Shun; Zhang, Hang; Spincemaille, Pascal; Nguyen, Thanh D; Sabuncu, Mert R; Wang, Yi.
Afiliación
  • Zhang J; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA.
  • Liu Z; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA.
  • Zhang S; Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA.
  • Zhang H; Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA; Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA.
  • Spincemaille P; Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA.
  • Nguyen TD; Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA.
  • Sabuncu MR; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA; Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA.
  • Wang Y; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA. Electronic address: yiwang@med.cornell.edu.
Neuroimage ; 211: 116579, 2020 05 01.
Article en En | MEDLINE | ID: mdl-31981779
ABSTRACT
Deep learning (DL) is increasingly used to solve ill-posed inverse problems in medical imaging, such as reconstruction from noisy and/or incomplete data, as DL offers advantages over conventional methods that rely on explicit image features and hand engineered priors. However, supervised DL-based methods may achieve poor performance when the test data deviates from the training data, for example, when it has pathologies not encountered in the training data. Furthermore, DL-based image reconstructions do not always incorporate the underlying forward physical model, which may improve performance. Therefore, in this work we introduce a novel approach, called fidelity imposed network edit (FINE), which modifies the weights of a pre-trained reconstruction network for each case in the testing dataset. This is achieved by minimizing an unsupervised fidelity loss function that is based on the forward physical model. FINE is applied to two important inverse problems in neuroimaging quantitative susceptibility mapping (QSM) and under-sampled image reconstruction in MRI. Our experiments demonstrate that FINE can improve reconstruction accuracy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Imagen por Resonancia Magnética / Hemorragia Cerebral / Neuroimagen / Aprendizaje Profundo / Esclerosis Múltiple Tipo de estudio: Prognostic_studies Límite: Adult / Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Imagen por Resonancia Magnética / Hemorragia Cerebral / Neuroimagen / Aprendizaje Profundo / Esclerosis Múltiple Tipo de estudio: Prognostic_studies Límite: Adult / Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos