Your browser doesn't support javascript.
loading
Electronic State and Photophysics of 2-Ethylhexyl-4-methoxycinnamate as UV-B Sunscreen under Jet-Cooled Condition.
Muramatsu, Satoru; Nakayama, Shingo; Kinoshita, Shin-Nosuke; Onitsuka, Yuuki; Kohguchi, Hiroshi; Inokuchi, Yoshiya; Zhu, Chaoyuan; Ebata, Takayuki.
Afiliación
  • Muramatsu S; Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan.
  • Nakayama S; Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan.
  • Kinoshita SN; Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan.
  • Onitsuka Y; Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan.
  • Kohguchi H; Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan.
  • Inokuchi Y; Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan.
  • Zhu C; Department of Applied Chemistry and Institute for Molecular Science , National Chiao Tung University , Hsinchu 30010 , Taiwan.
  • Ebata T; Center for Emergent Functional Matter Science , National Chiao Tung University , Hsinchu 30010 , Taiwan.
J Phys Chem A ; 124(7): 1272-1278, 2020 Feb 20.
Article en En | MEDLINE | ID: mdl-31992045
ABSTRACT
The title compound, 2-ethylhexyl-4-methoxycinnamate (2EH4MC), is known as a typical ingredient of sunscreen cosmetics that effectively converts the absorbed UV-B light to thermal energy. This energy conversion process includes the nonradiative decay (NRD) trans-cis isomerization and finally going back to the original structure with a release of thermal energy. In this study, we performed UV spectroscopy for jet-cooled 2EH4MC to investigate the electronic/geometrical structures as well as the NRD mechanism. Laser-induced-fluorescence (LIF) spectroscopy gave the well-resolved vibronic structure of the S1-S0 transition; UV-UV hole-burning (HB) spectroscopy and density functional theory (DFT) calculations revealed the presence of syn and anti isomers, where the methoxy (-OCH3) groups orient in opposite directions to each other. Picosecond UV-UV pump-probe spectroscopy revealed the NRD process from the excited singlet (S1 (1ππ*)) state occurs at a rate constant of ∼1010-1011 s-1, attributed to internal conversion (IC) to the 1nπ* state. Nanosecond UV-deep UV (DUV) pump-probe spectroscopy identified a transient triplet (T1 (3ππ*)) state, whose energy (from S0) and lifetime are 18 400 cm-1 and 20 ns, respectively. These results demonstrate that the photoisomerization of 2EH4MC includes multistep internal conversions and intersystem crossings, described as "S1 (trans, 1ππ*) → 1nπ* → T1 (3ππ*) → S0 (cis)".

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Phys Chem A Asunto de la revista: QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Phys Chem A Asunto de la revista: QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Japón