Your browser doesn't support javascript.
loading
Biological applications of knowledge graph embedding models.
Mohamed, Sameh K; Nounu, Aayah; Novácek, Vít.
Afiliación
  • Mohamed SK; Data Science Institute, NUI Galway, Galway, Irelands.kamal1@nuigalway.ie.
  • Nounu A; Insight Centre for Data Analytics, NUI Galway, Galway, Ireland.
  • Novácek V; MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK.
Brief Bioinform ; 22(2): 1679-1693, 2021 03 22.
Article en En | MEDLINE | ID: mdl-32065227
Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph's inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug-target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Biología Computacional Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Biología Computacional Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article