Your browser doesn't support javascript.
loading
Detection of single DNA mismatches by force spectroscopy in short DNA hairpins.
Landuzzi, F; Viader-Godoy, X; Cleri, F; Pastor, I; Ritort, F.
Afiliación
  • Landuzzi F; Department of Physics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Japan.
  • Viader-Godoy X; Small Biosystems Lab., Univ. de Barcelona, Diagonal 647, 08028 Barcelona, Spain.
  • Cleri F; I.E.M.N. (UMR Cnrs 8520), 59652 Villeneuve d'Ascq, France.
  • Pastor I; Small Biosystems Lab., Univ. de Barcelona, Diagonal 647, 08028 Barcelona, Spain.
  • Ritort F; Small Biosystems Lab., Univ. de Barcelona, Diagonal 647, 08028 Barcelona, Spain.
J Chem Phys ; 152(7): 074204, 2020 Feb 21.
Article en En | MEDLINE | ID: mdl-32087630
ABSTRACT
Identification of defective DNA structures is a difficult task, since small differences in base-pair bonding are hidden in the local structural variability of a generally random base-pair sequence. Defects, such as base mismatches, missing bases, crosslinks, and so on, occur in DNA with high frequency and must be efficiently identified and repaired to avoid dire consequences such as genetic mutations. Here, we focus on the detection of base mismatches, which is local deviations from the ideal Watson-Crick pairing rule, which may typically originate from DNA replication process, foreign chemical attack, or ionizing radiation. Experimental detection of a mismatch defect demands the ability to measure slight deviations in the free energy and molecular structure. We introduce different mismatches in short DNA hairpins (10 or 20 base pairs plus a 4-base loop) sandwiched between dsDNA handles to be used in single-molecule force spectroscopy with optical tweezers. We perform both hopping and force-pulling experiments to measure the excess free energies and deduce the characteristic kinetic signatures of the mismatch from the force-distance curves. All-atom molecular dynamics simulations lend support to the detailed interpretation of the experimental data. Such measurements, at the lowest sensitivity limits of this experimental technique, demonstrate the capability of identifying the presence of mismatches in a random complementary dsDNA sequence and provide lower bounds for the ability to distinguish different structural defects.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: J Chem Phys Año: 2020 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: J Chem Phys Año: 2020 Tipo del documento: Article País de afiliación: Japón