Your browser doesn't support javascript.
loading
Recurrent architecture for adaptive regulation of learning in the insect brain.
Eschbach, Claire; Fushiki, Akira; Winding, Michael; Schneider-Mizell, Casey M; Shao, Mei; Arruda, Rebecca; Eichler, Katharina; Valdes-Aleman, Javier; Ohyama, Tomoko; Thum, Andreas S; Gerber, Bertram; Fetter, Richard D; Truman, James W; Litwin-Kumar, Ashok; Cardona, Albert; Zlatic, Marta.
Afiliación
  • Eschbach C; HHMI Janelia Research Campus, Ashburn, VA, USA.
  • Fushiki A; Department of Zoology, University of Cambridge, Cambridge, UK.
  • Winding M; HHMI Janelia Research Campus, Ashburn, VA, USA.
  • Schneider-Mizell CM; Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
  • Shao M; HHMI Janelia Research Campus, Ashburn, VA, USA.
  • Arruda R; Department of Zoology, University of Cambridge, Cambridge, UK.
  • Eichler K; HHMI Janelia Research Campus, Ashburn, VA, USA.
  • Valdes-Aleman J; Allen Institute for Brain Science, Seattle, WA, USA.
  • Ohyama T; HHMI Janelia Research Campus, Ashburn, VA, USA.
  • Thum AS; HHMI Janelia Research Campus, Ashburn, VA, USA.
  • Gerber B; HHMI Janelia Research Campus, Ashburn, VA, USA.
  • Fetter RD; Institute of Neurobiology, University of Puerto Rico Medical Science Campus, San Juan, Puerto Rico, USA.
  • Truman JW; HHMI Janelia Research Campus, Ashburn, VA, USA.
  • Litwin-Kumar A; HHMI Janelia Research Campus, Ashburn, VA, USA.
  • Cardona A; Department of Biology, McGill University, Montreal, Quebec, Canada.
  • Zlatic M; Department of Genetics, Institute for Biology, University of Leipzig, Leipzig, Germany.
Nat Neurosci ; 23(4): 544-555, 2020 04.
Article en En | MEDLINE | ID: mdl-32203499
ABSTRACT
Dopaminergic neurons (DANs) drive learning across the animal kingdom, but the upstream circuits that regulate their activity and thereby learning remain poorly understood. We provide a synaptic-resolution connectome of the circuitry upstream of all DANs in a learning center, the mushroom body of Drosophila larva. We discover afferent sensory pathways and a large population of neurons that provide feedback from mushroom body output neurons and link distinct memory systems (aversive and appetitive). We combine this with functional studies of DANs and their presynaptic partners and with comprehensive circuit modeling. We find that DANs compare convergent feedback from aversive and appetitive systems, which enables the computation of integrated predictions that may improve future learning. Computational modeling reveals that the discovered feedback motifs increase model flexibility and performance on learning tasks. Our study provides the most detailed view to date of biological circuit motifs that support associative learning.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cuerpos Pedunculados / Aprendizaje / Memoria Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cuerpos Pedunculados / Aprendizaje / Memoria Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos