Your browser doesn't support javascript.
loading
Phospholipase D1 Ablation Disrupts Mouse Longitudinal Hippocampal Axis Organization and Functioning.
Santa-Marinha, Luísa; Castanho, Isabel; Silva, Rita Ribeiro; Bravo, Francisca Vaz; Miranda, André Miguel; Meira, Torcato; Morais-Ribeiro, Rafaela; Marques, Fernanda; Xu, Yimeng; Point du Jour, Kimberly; Wenk, Markus; Chan, Robin Barry; Di Paolo, Gilbert; Pinto, Vítor; Oliveira, Tiago Gil.
Afiliación
  • Santa-Marinha L; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
  • Castanho I; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
  • Silva RR; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
  • Bravo FV; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
  • Miranda AM; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
  • Meira T; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
  • Morais-Ribeiro R; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
  • Marques F; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
  • Xu Y; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
  • Point du Jour K; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA.
  • Wenk M; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.
  • Chan RB; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA.
  • Di Paolo G; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA.
  • Pinto V; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
  • Oliveira TG; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. Electronic address: tiago@med.uminho.pt.
Cell Rep ; 30(12): 4197-4208.e6, 2020 03 24.
Article en En | MEDLINE | ID: mdl-32209478
ABSTRACT
Phosphatidic acid (PA) is a signaling lipid involved in the modulation of synaptic structure and functioning. Based on previous work showing a decreasing PA gradient along the longitudinal axis of the rodent hippocampus, we asked whether the dorsal hippocampus (DH) and the ventral hippocampus (VH) are differentially affected by PA modulation. Here, we show that phospholipase D1 (PLD1) is a major hippocampal PA source, compared to PLD2, and that PLD1 ablation affects predominantly the lipidome of the DH. Moreover, Pld1 knockout (KO) mice show specific deficits in novel object recognition and social interaction and disruption in the DH-VH dendritic arborization differentiation in CA1/CA3 pyramidal neurons. Also, Pld1 KO animals present reduced long-term depression (LTD) induction and reduced GluN2A and SNAP-25 protein levels in the DH. Overall, we observe that PLD1-derived PA reduction leads to differential lipid signatures along the longitudinal hippocampal axis, predominantly affecting DH organization and functioning.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fosfolipasa D / Eliminación de Gen / Hipocampo Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Cell Rep Año: 2020 Tipo del documento: Article País de afiliación: Portugal

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fosfolipasa D / Eliminación de Gen / Hipocampo Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Cell Rep Año: 2020 Tipo del documento: Article País de afiliación: Portugal