Your browser doesn't support javascript.
loading
An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1.
Miranda, Connie Jaqueline; Fernandez, Nicole; Kamel, Nader; Turner, Daniel; Benzenhafer, Del; Bolch, Susan N; Andring, Jacob T; McKenna, Robert; Smith, W Clay.
Afiliación
  • Miranda CJ; Department of Ophthalmology, University of Florida, Gainesville, Florida 32610.
  • Fernandez N; Department of Ophthalmology, University of Florida, Gainesville, Florida 32610.
  • Kamel N; Department of Ophthalmology, University of Florida, Gainesville, Florida 32610.
  • Turner D; Department of Ophthalmology, University of Florida, Gainesville, Florida 32610.
  • Benzenhafer D; Department of Ophthalmology, University of Florida, Gainesville, Florida 32610.
  • Bolch SN; Department of Ophthalmology, University of Florida, Gainesville, Florida 32610.
  • Andring JT; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610.
  • McKenna R; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610.
  • Smith WC; Department of Ophthalmology, University of Florida, Gainesville, Florida 32610 wcsmith@ufl.edu.
J Biol Chem ; 295(19): 6498-6508, 2020 05 08.
Article en En | MEDLINE | ID: mdl-32238431
ABSTRACT
Arrestin-1 is the arrestin family member responsible for inactivation of the G protein-coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1-enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fosfopiruvato Hidratasa / Rodopsina / Modelos Moleculares / Biomarcadores de Tumor / Arrestina / Proteínas Supresoras de Tumor / Proteínas de Unión al ADN / Complejos Multienzimáticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Biol Chem Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fosfopiruvato Hidratasa / Rodopsina / Modelos Moleculares / Biomarcadores de Tumor / Arrestina / Proteínas Supresoras de Tumor / Proteínas de Unión al ADN / Complejos Multienzimáticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Biol Chem Año: 2020 Tipo del documento: Article