Your browser doesn't support javascript.
loading
Modeling of shotgun sequencing of DNA plasmids using experimental and theoretical approaches.
Shityakov, Sergey; Bencurova, Elena; Förster, Carola; Dandekar, Thomas.
Afiliación
  • Shityakov S; Department of Bioinformatics, University of Würzburg, 97074, Würzburg, Germany. shityakoff@hotmail.com.
  • Bencurova E; Department of Psychiatry, China Medical University Hospital, 404, Taichung, Taiwan. shityakoff@hotmail.com.
  • Förster C; Department of Bioinformatics, University of Würzburg, 97074, Würzburg, Germany.
  • Dandekar T; Department of Anesthesia and Critical Care, Würzburg University Hospital, 97080, Würzburg, Germany.
BMC Bioinformatics ; 21(1): 132, 2020 Apr 03.
Article en En | MEDLINE | ID: mdl-32245400
BACKGROUND: Processing and analysis of DNA sequences obtained from next-generation sequencing (NGS) face some difficulties in terms of the correct prediction of DNA sequencing outcomes without the implementation of bioinformatics approaches. However, algorithms based on NGS perform inefficiently due to the generation of long DNA fragments, the difficulty of assembling them and the complexity of the used genomes. On the other hand, the Sanger DNA sequencing method is still considered to be the most reliable; it is a reliable choice for virtual modeling to build all possible consensus sequences from smaller DNA fragments. RESULTS: In silico and in vitro experiments were conducted: (1) to implement and test our novel sequencing algorithm, using the standard cloning vectors of different length and (2) to validate experimentally virtual shotgun sequencing using the PCR technique with the number of cycles from 1 to 9 for each reaction. CONCLUSIONS: We applied a novel algorithm based on Sanger methodology to correctly predict and emphasize the performance of DNA sequencing techniques as well as in de novo DNA sequencing and its further application in synthetic biology. We demonstrate the statistical significance of our results.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Análisis de Secuencia de ADN / Secuenciación de Nucleótidos de Alto Rendimiento Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Análisis de Secuencia de ADN / Secuenciación de Nucleótidos de Alto Rendimiento Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Alemania