Your browser doesn't support javascript.
loading
SANDI: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI.
Palombo, Marco; Ianus, Andrada; Guerreri, Michele; Nunes, Daniel; Alexander, Daniel C; Shemesh, Noam; Zhang, Hui.
Afiliación
  • Palombo M; Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK. Electronic address: marco.palombo@ucl.ac.uk.
  • Ianus A; Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK; Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
  • Guerreri M; Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK.
  • Nunes D; Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
  • Alexander DC; Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK.
  • Shemesh N; Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
  • Zhang H; Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK.
Neuroimage ; 215: 116835, 2020 07 15.
Article en En | MEDLINE | ID: mdl-32289460
ABSTRACT
This work introduces a compartment-based model for apparent cell body (namely soma) and neurite density imaging (SANDI) using non-invasive diffusion-weighted MRI (DW-MRI). The existing conjecture in brain microstructure imaging through DW-MRI presents water diffusion in white (WM) and gray (GM) matter as restricted diffusion in neurites, modelled by infinite cylinders of null radius embedded in the hindered extra-neurite water. The extra-neurite pool in WM corresponds to water in the extra-axonal space, but in GM it combines water in the extra-cellular space with water in soma. While several studies showed that this microstructure model successfully describe DW-MRI data in WM and GM at b â€‹≤ â€‹3,000 â€‹s/mm2 (or 3 â€‹ms/µm2), it has been also shown to fail in GM at high b values (b≫3,000 â€‹s/mm2 or 3 â€‹ms/µm2). Here we hypothesise that the unmodelled soma compartment (i.e. cell body of any brain cell type from neuroglia to neurons) may be responsible for this failure and propose SANDI as a new model of brain microstructure where soma of any brain cell type is explicitly included. We assess the effects of size and density of soma on the direction-averaged DW-MRI signal at high b values and the regime of validity of the model using numerical simulations and comparison with experimental data from mouse (bmax â€‹= â€‹40,000 â€‹s/mm2, or 40 â€‹ms/µm2) and human (bmax â€‹= â€‹10,000 â€‹s/mm2, or 10 â€‹ms/µm2) brain. We show that SANDI defines new contrasts representing complementary information on the brain cyto- and myelo-architecture. Indeed, we show maps from 25 healthy human subjects of MR soma and neurite signal fractions, that remarkably mirror contrasts of histological images of brain cyto- and myelo-architecture. Although still under validation, SANDI might provide new insight into tissue architecture by introducing a new set of biomarkers of potential great value for biomedical applications and pure neuroscience.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Neuritas / Imagen de Difusión por Resonancia Magnética / Cuerpo Celular / Modelos Neurológicos Límite: Adult / Animals / Female / Humans / Male Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Neuritas / Imagen de Difusión por Resonancia Magnética / Cuerpo Celular / Modelos Neurológicos Límite: Adult / Animals / Female / Humans / Male Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article