Your browser doesn't support javascript.
loading
Electrospinning of polyurethane/graphene oxide for skin wound dressing and its in vitro characterization.
Sadeghianmaryan, Ali; Sardroud, Hamed Alizadeh; Allafasghari, Sanaz; Yazdanpanah, Zahra; Naghieh, Saman; Gorji, Mohsen; Chen, Xiongbiao.
Afiliación
  • Sadeghianmaryan A; Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran.
  • Sardroud HA; Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada.
  • Allafasghari S; Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran.
  • Yazdanpanah Z; Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada.
  • Naghieh S; Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada.
  • Gorji M; New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran.
  • Chen X; Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada.
J Biomater Appl ; 35(1): 135-145, 2020 07.
Article en En | MEDLINE | ID: mdl-32295469
Electrospinning polyurethane has been utilized as skin wound dressing for protecting skin wounds from infection and thus facilitating their healings, but also limited by its imperfect biocompatibility, mechanical and antibacterial properties. This paper presents our study on the addition of graphene oxide to electrospinning polyurethane for improved properties, as well as its in vitro characterization. Polyurethane/graphene oxide wound dressing was electrospun with varying amount of graphene oxide (from 0.0% to 2.0%); and in vitro tests was carried out to characterize the wound dressing properties and performance from the structural, mechanical, and biological perspectives. Scanning electron microscopy and Fourier-transform infrared spectroscopy were used to confirm the interaction between graphene oxide particles and polyurethane fibers, while the scanning electron microscopy images further illustrated that the wound dressing was of a porous structure with fibre diameters depending on the amount of graphene oxide added; specifically, 20 to 180 nm were for composite polyurethane/graphene oxide fibers and 600 to 900 nm for pure polyurethane. Our results also revealed that the hydrophilicity and swelling properties of the wound dressing could be regulated by the amount of graphene oxide added to the polyurethane/graphene oxide composites. Mechanical, antibacterial, and cytotoxicity properties of the composite polyurethane/graphene oxide wound dressing were examined with the results illustrating that the addition of graphene oxide could improve the properties of the electrospun wound dressing. Combined together, our study illustrates that electrospinning polyurethane/graphene oxide composite is promising as skin wound dressing.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Poliuretanos / Vendajes / Cicatrización de Heridas / Materiales Biocompatibles / Grafito / Antibacterianos Límite: Humans Idioma: En Revista: J Biomater Appl Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Irán

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Poliuretanos / Vendajes / Cicatrización de Heridas / Materiales Biocompatibles / Grafito / Antibacterianos Límite: Humans Idioma: En Revista: J Biomater Appl Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Irán