Your browser doesn't support javascript.
loading
Using an integrative machine learning approach utilising homology modelling to clinically interpret genetic variants: CACNA1F as an exemplar.
Sallah, Shalaw R; Sergouniotis, Panagiotis I; Barton, Stephanie; Ramsden, Simon; Taylor, Rachel L; Safadi, Amro; Kabir, Mitra; Ellingford, Jamie M; Lench, Nick; Lovell, Simon C; Black, Graeme C M.
Afiliación
  • Sallah SR; Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. Graeme.black@manchester.ac.uk.
  • Sergouniotis PI; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK. Graeme.black@manchester.ac.uk.
  • Barton S; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK.
  • Ramsden S; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK.
  • Taylor RL; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK.
  • Safadi A; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK.
  • Kabir M; Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
  • Ellingford JM; Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
  • Lench N; Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK.
  • Lovell SC; Congenica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, UK.
  • Black GCM; Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
Eur J Hum Genet ; 28(9): 1274-1282, 2020 09.
Article en En | MEDLINE | ID: mdl-32313206
ABSTRACT
Advances in DNA sequencing technologies have revolutionised rare disease diagnostics and have led to a dramatic increase in the volume of available genomic data. A key challenge that needs to be overcome to realise the full potential of these technologies is that of precisely predicting the effect of genetic variants on molecular and organismal phenotypes. Notably, despite recent progress, there is still a lack of robust in silico tools that accurately assign clinical significance to variants. Genetic alterations in the CACNA1F gene are the commonest cause of X-linked incomplete Congenital Stationary Night Blindness (iCSNB), a condition associated with non-progressive visual impairment. We combined genetic and homology modelling data to produce CACNA1F-vp, an in silico model that differentiates disease-implicated from benign missense CACNA1F changes. CACNA1F-vp predicts variant effects on the structure of the CACNA1F encoded protein (a calcium channel) using parameters based upon changes in amino acid properties; these include size, charge, hydrophobicity, and position. The model produces an overall score for each variant that can be used to predict its pathogenicity. CACNA1F-vp outperformed four other tools in identifying disease-implicated variants (area under receiver operating characteristic and precision recall curves = 0.84; Matthews correlation coefficient = 0.52) using a tenfold cross-validation technique. We consider this protein-specific model to be a robust stand-alone diagnostic classifier that could be replicated in other proteins and could enable precise and timely diagnosis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pruebas Genéticas / Alineación de Secuencia / Análisis de Secuencia de ADN / Homología Estructural de Proteína Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Eur J Hum Genet Asunto de la revista: GENETICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pruebas Genéticas / Alineación de Secuencia / Análisis de Secuencia de ADN / Homología Estructural de Proteína Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Eur J Hum Genet Asunto de la revista: GENETICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido