Your browser doesn't support javascript.
loading
Macromolecular gelatin properties affect fibrin microarchitecture and tumor spheroid behavior in fibrin-gelatin gels.
Dubbin, Karen; Robertson, Claire; Hinckley, Aubree; Alvarado, Javier A; Gilmore, Sean F; Hynes, William F; Wheeler, Elizabeth K; Moya, Monica L.
Afiliación
  • Dubbin K; Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Robertson C; Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Hinckley A; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Alvarado JA; Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Gilmore SF; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Hynes WF; Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Wheeler EK; Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Moya ML; Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA. Electronic address: moya3@llnl.gov.
Biomaterials ; 250: 120035, 2020 08.
Article en En | MEDLINE | ID: mdl-32334200
The biophysical properties of extracellular matrices (ECM) are known to regulate cell behavior, however decoupling cell behavior changes due to the relative contributions of material microstructure versus biomechanics or nutrient permeability remains challenging, especially within complex, multi-material matrices. We developed four gelatin-fibrin interpenetrating network (IPN) formulations which are identical in composition but possess variable gelatin molecular weight distributions, and display differences in microstructure, biomechanics, and diffusivity. In this work we interrogate the response of multicellular tumor spheroids to these IPN formulations and found that a high stiffness, gelatin-network dominated IPNs impeded remodeling and invasion of multicellular tumor spheroids; whereas relatively lower stiffness, fibrin-network dominated IPNs permitted protease-dependent remodeling and spheroid invasion. Cell proliferation correlated to nutrient diffusivity across tested IPN formulations. These findings demonstrate the complexity of ECM IPNs, relative to single polymer matrices, and highlight that cell response does not derive from a single aspect of the ECM, but rather from the interplay of multiple biomechanical properties. The methodology developed here represents a framework for future studies which aim to characterize cellular phenotypic responses to biophysical cues present within complex, multi-material matrices.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Gelatina / Neoplasias Límite: Humans Idioma: En Revista: Biomaterials Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Gelatina / Neoplasias Límite: Humans Idioma: En Revista: Biomaterials Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos