Your browser doesn't support javascript.
loading
Combining molecular dynamics simulations with small-angle X-ray and neutron scattering data to study multi-domain proteins in solution.
Larsen, Andreas Haahr; Wang, Yong; Bottaro, Sandro; Grudinin, Sergei; Arleth, Lise; Lindorff-Larsen, Kresten.
Afiliación
  • Larsen AH; Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  • Wang Y; X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
  • Bottaro S; Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  • Grudinin S; Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  • Arleth L; Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France.
  • Lindorff-Larsen K; X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
PLoS Comput Biol ; 16(4): e1007870, 2020 04.
Article en En | MEDLINE | ID: mdl-32339173
ABSTRACT
Many proteins contain multiple folded domains separated by flexible linkers, and the ability to describe the structure and conformational heterogeneity of such flexible systems pushes the limits of structural biology. Using the three-domain protein TIA-1 as an example, we here combine coarse-grained molecular dynamics simulations with previously measured small-angle scattering data to study the conformation of TIA-1 in solution. We show that while the coarse-grained potential (Martini) in itself leads to too compact conformations, increasing the strength of protein-water interactions results in ensembles that are in very good agreement with experiments. We show how these ensembles can be refined further using a Bayesian/Maximum Entropy approach, and examine the robustness to errors in the energy function. In particular we find that as long as the initial simulation is relatively good, reweighting against experiments is very robust. We also study the relative information in X-ray and neutron scattering experiments and find that refining against the SAXS experiments leads to improvement in the SANS data. Our results suggest a general strategy for studying the conformation of multi-domain proteins in solution that combines coarse-grained simulations with small-angle X-ray scattering data that are generally most easy to obtain. These results may in turn be used to design further small-angle neutron scattering experiments that exploit contrast variation through 1H/2H isotope substitutions.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Difracción de Rayos X / Proteínas / Dispersión del Ángulo Pequeño / Simulación de Dinámica Molecular Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Dinamarca

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Difracción de Rayos X / Proteínas / Dispersión del Ángulo Pequeño / Simulación de Dinámica Molecular Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Dinamarca