Your browser doesn't support javascript.
loading
Noble Metal-Free TiO2-Coated Carbon Nitride Layers for Enhanced Visible Light-Driven Photocatalysis.
Zhang, Bo; Peng, Xiangfeng; Wang, Zhao.
Afiliación
  • Zhang B; National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
  • Peng X; National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
  • Wang Z; National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Nanomaterials (Basel) ; 10(4)2020 Apr 23.
Article en En | MEDLINE | ID: mdl-32340144
ABSTRACT
Composites of g-C3N4/TiO2 were one-step prepared using electron impact with dielectric barrier discharge (DBD) plasma as the electron source. Due to the low operation temperature, TiO2 by the plasma method shows higher specific surface area and smaller particle size than that prepared via conventional calcination. Most interestingly, electron impact produces more oxygen vacancy on TiO2, which facilitates the recombination and formation of heterostructure of g-C3N4/TiO2. The composites have higher light absorption capacity and lower charge recombination efficiency. g-C3N4/TiO2 by plasma can produce hydrogen at a rate of 219.9 µmol·g-1·h-1 and completely degrade Rhodamine B (20mg·L-1) in two hours. Its hydrogen production rates were 3 and 1.5 times higher than that by calcination and pure g-C3N4, respectively. Electron impact, ozone and oxygen radical also play key roles in plasma preparation. Plasma has unique advantages in metal oxides defect engineering and the preparation of heterostructured composites with prospective applications as photocatalysts for pollutant degradation and water splitting.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2020 Tipo del documento: Article País de afiliación: China