The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection.
Elife
; 92020 05 04.
Article
en En
| MEDLINE
| ID: mdl-32369020
The discovery of antibiotic drugs, which treat diseases caused by bacteria, has been a hugely valuable advance in modern medicine. They work by targeting specific cellular processes in bacteria, ultimately stopping them from multiplying or killing them outright. Antibiotics sometimes also affect their human hosts and can cause side-effects, such as gut problems or skin reactions. Recent evidence suggests that antibiotics also have an impact on the human immune system. This may happen either indirectly, by affecting 'friendly' bacteria normally present in the body, or through direct effects on immune cells. In turn, this could change the effectiveness of drug treatments. For example, if an antibiotic weakens immune cells, the body could have difficulty fighting off the existing infection or become more vulnerable to new ones. However, even though new drugs are being introduced to combat the worldwide rise of antibiotic-resistant bacteria, their effects on immunity are still not well understood. For example, bedaquiline is an antibiotic recently developed to treat tuberculosis infections that are resistant to several drugs. Giraud-Gatineau et al. wanted to determine if bedaquiline altered the human immune response to bacterial infection independently from its direct anti-microbial effects. Macrophages engulf foreign particles like bacteria and break them down using enzymes stored within small internal compartments, or 'lysosomes'. Initial experiments using human macrophages, grown both with and without bedaquiline, showed that the drug did not harm the cells and that they grew normally. A combination of microscope imaging and genetic analysis revealed that exposure to bedaquiline not only increased the number of lysosomes within macrophage cells, but also the activity of genes and proteins that increase lysosomes' ability to break down foreign particles. These results suggested that bedaquiline treatment might make macrophages better at fighting infection, even if the drug itself had no direct effect on bacterial cells. Further studies, where macrophages were first treated with bedaquiline and then exposed to different types of bacteria known to be resistant to the drug, confirmed this hypothesis: in every case, the treated macrophages became efficient bacterial killers. In contrast, older anti-tuberculosis drugs did not have any such potentiating effect on the macrophages. This work sheds new light on our how antibiotic drugs can interact with the cells of the human immune system, and can sometimes even boost our innate defences. Such immune-boosting effects could one day be exploited to make more effective treatments against bacterial infections.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Fagocitos
/
Tuberculosis
/
Diarilquinolinas
/
Inmunidad Innata
/
Activación de Macrófagos
/
Macrófagos
/
Antibacterianos
/
Mycobacterium tuberculosis
Límite:
Humans
Idioma:
En
Revista:
Elife
Año:
2020
Tipo del documento:
Article
País de afiliación:
Francia