Your browser doesn't support javascript.
loading
Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions.
Fincker, Maeva; Huber, Julie A; Orphan, Victoria J; Rappé, Michael S; Teske, Andreas; Spormann, Alfred M.
Afiliación
  • Fincker M; Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.
  • Huber JA; Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
  • Orphan VJ; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
  • Rappé MS; Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA.
  • Teske A; Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
  • Spormann AM; Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.
Environ Microbiol ; 22(8): 3188-3204, 2020 08.
Article en En | MEDLINE | ID: mdl-32372496
ABSTRACT
Uncultured members of the Chloroflexi phylum are highly enriched in numerous subseafloor environments. Their metabolic potential was evaluated by reconstructing 31 Chloroflexi genomes from six different subseafloor habitats. The near ubiquitous presence of enzymes of the Wood-Ljungdahl pathway, electron bifurcation, and ferredoxin-dependent transport-coupled phosphorylation indicated anaerobic acetogenesis was central to their catabolism. Most of the genomes simultaneously contained multiple degradation pathways for complex carbohydrates, detrital protein, aromatic compounds, and hydrogen, indicating the coupling of oxidation of chemically diverse organic substrates to ubiquitous CO2 reduction. Such pathway combinations may confer a fitness advantage in subseafloor environments by enabling these Chloroflexi to act as primary fermenters and acetogens in one microorganism without the need for syntrophic H2 consumption. While evidence for catabolic oxygen respiration was limited to two phylogenetic clusters, the presence of genes encoding putative reductive dehalogenases throughout the phylum expanded the phylogenetic boundary for potential organohalide respiration past the Dehalococcoidia class.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Microbiología del Agua / Genoma Bacteriano / Chloroflexi Idioma: En Revista: Environ Microbiol Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Microbiología del Agua / Genoma Bacteriano / Chloroflexi Idioma: En Revista: Environ Microbiol Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos