Your browser doesn't support javascript.
loading
Robust dynamic community detection with applications to human brain functional networks.
Martinet, L-E; Kramer, M A; Viles, W; Perkins, L N; Spencer, E; Chu, C J; Cash, S S; Kolaczyk, E D.
Afiliación
  • Martinet LE; Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
  • Kramer MA; Department of Mathematics and Statistics, Boston University, Boston, MA, 02215, USA.
  • Viles W; Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
  • Perkins LN; Department of Mathematics and Statistics, Boston University, Boston, MA, 02215, USA.
  • Spencer E; Graduate Program in Neuroscience, Boston University, Boston, MA, 02215, USA.
  • Chu CJ; Graduate Program in Neuroscience, Boston University, Boston, MA, 02215, USA.
  • Cash SS; Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
  • Kolaczyk ED; Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
Nat Commun ; 11(1): 2785, 2020 06 05.
Article en En | MEDLINE | ID: mdl-32503997
While current technology permits inference of dynamic brain networks over long time periods at high temporal resolution, the detailed structure of dynamic network communities during human seizures remains poorly understood. We introduce a new methodology that addresses critical aspects unique to the analysis of dynamic functional networks inferred from noisy data. We propose a dynamic plex percolation method (DPPM) that is robust to edge noise, and yields well-defined spatiotemporal communities that span forward and backwards in time. We show in simulation that DPPM outperforms existing methods in accurately capturing certain stereotypical dynamic community behaviors in noisy situations. We then illustrate the ability of this method to track dynamic community organization during human seizures, using invasive brain voltage recordings at seizure onset. We conjecture that application of this method will yield new targets for surgical treatment of epilepsy, and more generally could provide new insights in other network neuroscience applications.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Red Nerviosa Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Adult / Humans / Male Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Red Nerviosa Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Adult / Humans / Male Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos